Suppr超能文献

自适应疫情网络中的隔离和自我隔离措施的平衡。

Balancing Quarantine and Self-Distancing Measures in Adaptive Epidemic Networks.

机构信息

Complexity Science Hub Vienna, Josefstadter Str. 39, 1080, Vienna, Austria.

Technical University of Munich, Department of Mathematics (M8), Boltzmannstr. 3, 85748, Garching b. Munchen, Germany.

出版信息

Bull Math Biol. 2022 Jun 30;84(8):79. doi: 10.1007/s11538-022-01033-3.

Abstract

We study the relative importance of two key control measures for epidemic spreading: endogenous social self-distancing and exogenous imposed quarantine. We use the framework of adaptive networks, moment-closure, and ordinary differential equations to introduce new model types of susceptible-infected-recovered (SIR) dynamics. First, we compare computationally expensive, adaptive network simulations with their corresponding computationally efficient ODE equivalents and find excellent agreement. Second, we discover that there exists a critical curve in parameter space for the epidemic threshold, which suggests a mutual compensation effect between the two mitigation strategies: as long as social distancing and quarantine measures are both sufficiently strong, large outbreaks are prevented. Third, we study the total number of infected and the maximum peak during large outbreaks using a combination of analytical estimates and numerical simulations. Also for large outbreaks we find a similar compensation mechanism as for the epidemic threshold. This means that if there is little incentive for social distancing in a population, drastic quarantining is required, and vice versa. Both pure scenarios are unrealistic in practice. The new models show that only a combination of measures is likely to succeed to control epidemic spreading. Fourth, we analytically compute an upper bound for the total number of infected on adaptive networks, using integral estimates in combination with a moment-closure approximation on the level of an observable. Our method allows us to elegantly and quickly check and cross-validate various conjectures about the relevance of different network control measures. In this sense it becomes possible to adapt also other models rapidly to new epidemic challenges.

摘要

我们研究了两种关键控制措施对于疫情传播的相对重要性

内源性社会自我隔离和外源性强制隔离。我们使用自适应网络、矩闭合和常微分方程框架,引入了易感染-感染-恢复(SIR)动力学的新型模型类型。首先,我们将计算成本高的自适应网络模拟与其相应的计算效率高的 ODE 等效物进行比较,发现两者非常吻合。其次,我们发现存在一个在参数空间中的流行病阈值的临界曲线,这表明两种缓解策略之间存在相互补偿效应:只要社交距离和隔离措施都足够强大,就可以防止大规模爆发。第三,我们使用分析估计和数值模拟相结合的方法研究了大爆发期间的总感染人数和最大峰值。对于大爆发,我们也发现了类似的补偿机制,就像流行病阈值一样。这意味着,如果人群中社交距离的动机很小,就需要进行严厉的隔离,反之亦然。这两种纯粹的情况在实践中都是不现实的。新模型表明,只有结合措施才有可能成功控制疫情传播。第四,我们使用积分估计与可观测量级别的矩闭合逼近相结合,在自适应网络上分析计算了总感染人数的上限。我们的方法使我们能够优雅而快速地检查和交叉验证关于不同网络控制措施相关性的各种假设。从这个意义上说,也有可能快速地将其他模型适应于新的疫情挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2376/9247004/09cf5404a071/11538_2022_1033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验