, 33 North Pintail Drive, Ocean Pines, MD, 21811, USA.
Bull Math Biol. 2021 Apr 23;83(6):63. doi: 10.1007/s11538-021-00897-1.
Assuming a homogeneous population, we apply the mass action law for rate of new infections and a second-order gamma distribution for removal probability to model spread of an epidemic. In numerical examinations of higher-order gamma distributions for removal probability, we discover an unexpected pattern in maximum fraction of population infected. We develop from first principles of probability an eighth-order system of ordinary differential equations to model effects of isolation and quarantine. We derive analytical expressions for reproduction numbers modeling isolation and quarantine when applied separately and together and verify them numerically. We quantify strength and speed required of these interventions to contain epidemics of varying severity and examine how their effectiveness depends on when they begin. We find that effectiveness is highly sensitive to small changes of intervention strength in a critical region. Finally, adding two more differential equations to capture natural population dynamics, we calculate endemic disease equilibria when affected by isolation and examine dynamics of coming to an equilibrium state.
假设人群同质,我们应用质量作用定律来描述新感染率,并采用二阶伽马分布来描述清除概率,以建立传染病传播模型。在对更高阶伽马分布的清除概率进行数值研究时,我们发现了一个出人意料的模式,即在最高感染人群比例方面。我们从概率的基本原理出发,建立了一个八阶常微分方程组来模拟隔离和检疫的影响。我们推导出了分别和联合应用于隔离和检疫时的繁殖数模型的解析表达式,并通过数值方法进行了验证。我们量化了这些干预措施的强度和速度,以控制不同严重程度的传染病,并研究了它们的有效性如何取决于干预措施开始的时间。我们发现,在一个关键区域,干预措施的有效性对干预强度的微小变化非常敏感。最后,我们增加了两个微分方程来捕捉自然人口动态,当受到隔离和检疫的影响时,计算出地方病平衡点,并研究了达到平衡状态的动力学。