Suppr超能文献

基于结构连接组的特质焦虑预测。

Structural connectome-based prediction of trait anxiety.

作者信息

Yoo Chaebin, Park Sujin, Kim M Justin

机构信息

Department of Psychology, Sungkyunkwan University, Seoul, South Korea.

Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.

出版信息

Brain Imaging Behav. 2022 Dec;16(6):2467-2476. doi: 10.1007/s11682-022-00700-2. Epub 2022 Jun 30.

Abstract

Neurobiological research on anxiety has shown that trait-anxious individuals may be characterized by weaker structural connectivity of the amygdala-prefrontal circuitry, representing a reduced capacity for efficient communication between the two brain regions. However, comparison of available studies has been inconsistent, possibly related to factors such as aging that influences both trait anxiety and structural connectivity of the brain. To help clarify the nature of brain-anxiety relationship, we applied a connectome-based predictive modeling framework on 148 diffusion-weighted imaging data from the Leipzig Study for Mind-Body Emotion Interactions dataset and identified multivariate patterns of whole-brain structural connectivity that predicted trait anxiety. Results showed that networks predictive of trait anxiety differed across age groups. Specifically, an isolated negative network, which shared overlapping features with the amygdala-prefrontal circuitry, was found in younger adults (20-30 years of age), whereas a widespread positive network highlighted by frontotemporal and frontolimbic connectivity was identified when both younger and older adults (20-80 years of age) were examined. No predictive network was observed when only older adults (30-80 years of age) were considered. Our findings highlight an important age-dependent effect on the structural connectome-based prediction of trait anxiety, supporting ongoing efforts to develop potential neural biomarkers of anxiety.

摘要

关于焦虑的神经生物学研究表明,特质焦虑个体的杏仁核 - 前额叶回路结构连接性可能较弱,这意味着两个脑区之间有效通信的能力降低。然而,现有研究的比较结果并不一致,这可能与影响特质焦虑和大脑结构连接性的衰老等因素有关。为了帮助阐明大脑与焦虑之间关系的本质,我们对来自莱比锡身心情绪相互作用研究数据集的148个扩散加权成像数据应用了基于连接组的预测建模框架,并确定了预测特质焦虑的全脑结构连接性多变量模式。结果表明,预测特质焦虑的网络在不同年龄组中存在差异。具体而言,在较年轻成年人(20 - 30岁)中发现了一个与杏仁核 - 前额叶回路具有重叠特征的孤立负性网络,而在同时考察较年轻和较年长成年人(20 - 80岁)时,发现了一个以前颞叶和前额叶 - 边缘叶连接为突出特征的广泛正性网络。当仅考虑较年长成年人(30 - 80岁)时,未观察到预测网络。我们的研究结果突出了年龄依赖性对基于结构连接组预测特质焦虑的重要影响,支持了当前开发焦虑潜在神经生物标志物的努力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验