文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于连接组学的注意力预测建模:在不同数据集上比较不同的功能连接特征和预测方法。

Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

机构信息

Department of Psychology, Yale University, New Haven, CT, USA.

Department of Psychology, Yale University, New Haven, CT, USA.

出版信息

Neuroimage. 2018 Feb 15;167:11-22. doi: 10.1016/j.neuroimage.2017.11.010. Epub 2017 Nov 6.


DOI:10.1016/j.neuroimage.2017.11.010
PMID:29122720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5845789/
Abstract

Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.

摘要

基于连接体的预测建模(CPM;Finn 等人,2015 年;Shen 等人,2017 年)最近被开发出来,用于从 fMRI 测量的功能连接(FC)预测个体差异的特质和行为,包括流体智力(Finn 等人,2015 年)和持续性注意力(Rosenberg 等人,2016a)。在这里,我们使用 CPM 框架,比较了三种不同的 FC 测量方法(皮尔逊相关系数、一致性和不和谐性)和两种不同的预测算法(线性和偏最小二乘 [PLS] 回归)在注意力功能方面的预测能力。一致性和不和谐性是最近提出的 FC 测量方法,分别跟踪同相同步和异相反相关(Meskaldji 等人,2015 年)。我们使用基于任务或静息状态的 FC 数据定义了基于连接体的模型,并测试了功能连接测量方法和特征选择/预测算法对个体注意力预测的影响。模型在训练数据集中使用单样本交叉验证进行内部验证,并使用三个独立数据集进行外部验证。训练数据集包括参与者执行持续性注意力任务和休息时采集的 fMRI 数据(N=25;Rosenberg 等人,2016a)。验证数据集包括:1)在执行停止信号任务和休息时采集的数据(N=83,包括 19 名在扫描前服用哌醋甲酯的参与者;Farr 等人,2014a;Rosenberg 等人,2016b),2)在注意力网络任务执行和休息时采集的数据(N=41,Rosenberg 等人,即将出版),3)来自 ADHD-200 联盟的静息状态数据和 ADHD 症状严重程度(N=113;Rosenberg 等人,2016a)。使用功能连接测量方法(皮尔逊相关系数、一致性和不和谐性)和预测算法(线性和 PLS 回归)的所有组合定义的模型预测了注意力能力,内部验证的预测和观察注意力测量之间的相关性高达 0.9,外部验证的相关性为 0.6(所有 p 值均小于 0.05)。基于任务数据训练的模型优于基于静息数据训练的模型。皮尔逊相关系数和一致性特征通常比不和谐性特征具有稍高的数值优势,而 PLS 回归模型通常优于线性回归模型。总体而言,除了与线性模型结合的相关特征(Rosenberg 等人,2016a)外,CPM 还可以考虑一致性特征和 PLS 回归。

相似文献

[1]
Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

Neuroimage. 2017-11-6

[2]
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.

J Neurosci. 2016-9-14

[3]
An information network flow approach for measuring functional connectivity and predicting behavior.

Brain Behav. 2019-7-9

[4]
Connectome-based Models Predict Separable Components of Attention in Novel Individuals.

J Cogn Neurosci. 2017-10-17

[5]
Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies.

Neuroimage. 2018-12-3

[6]
Overlapping attentional networks yield divergent behavioral predictions across tasks: Neuromarkers for diffuse and focused attention?

Neuroimage. 2020-4-1

[7]
Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology.

Neuroimage. 2017-12-21

[8]
Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI.

BMC Psychiatry. 2019-1-25

[9]
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.

Neuroimage. 2017-2-15

[10]
Connectome-based models predict attentional control in aging adults.

Neuroimage. 2018-10-28

引用本文的文献

[1]
The Specificity of Metacognition Questionnaire-30 Subdimensions: Findings From Connectome-Based Predictive Modeling.

Depress Anxiety. 2025-8-19

[2]
Identifying dynamic reproducible brain states using a predictive modelling approach.

Imaging Neurosci (Camb). 2025-4-17

[3]
Multi-voxel pattern analysis for developmental cognitive neuroscientists.

Dev Cogn Neurosci. 2025-3-25

[4]
Longitudinal functional brain connectivity maturation in premature newborn infants: Modulatory influence of early music enrichment.

Imaging Neurosci (Camb). 2024-11-18

[5]
Connectome-based predictive modeling of early and chronic psychosis symptoms.

Neuropsychopharmacology. 2025-5

[6]
Transdiagnostic Connectome-Based Prediction of Response Inhibition.

Hum Brain Mapp. 2025-2-15

[7]
Clinical response to neurofeedback in major depression relates to subtypes of whole-brain activation patterns during training.

Mol Psychiatry. 2025-6

[8]
Hierarchical individual variation and socioeconomic impact on personalized functional network topography in children.

BMC Med. 2024-11-25

[9]
Functional Brain Connectivity Predictors of Prospective Substance Use Initiation and Their Environmental Correlates.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-2

[10]
Connectome-based Predictive Models of General and Specific Executive Functions.

bioRxiv. 2025-2-9

本文引用的文献

[1]
Influences on the Test-Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility.

Cereb Cortex. 2017-11-1

[2]
Resting-state fMRI correlations: From link-wise unreliability to whole brain stability.

Neuroimage. 2017-7-3

[3]
Can brain state be manipulated to emphasize individual differences in functional connectivity?

Neuroimage. 2017-3-31

[4]
Top-down cortical interactions in visuospatial attention.

Brain Struct Funct. 2017-3-20

[5]
Characterizing Attention with Predictive Network Models.

Trends Cogn Sci. 2017-4

[6]
Using connectome-based predictive modeling to predict individual behavior from brain connectivity.

Nat Protoc. 2017-2-9

[7]
Prediction of long-term memory scores in MCI based on resting-state fMRI.

Neuroimage Clin. 2016-10-11

[8]
Multisite reliability of MR-based functional connectivity.

Neuroimage. 2017-2-1

[9]
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.

J Neurosci. 2016-9-14

[10]
Fluctuations in Global Brain Activity Are Associated With Changes in Whole-Brain Connectivity of Functional Networks.

IEEE Trans Biomed Eng. 2016-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索