Department of Psychology, Yale University, New Haven, CT, USA.
Department of Psychology, Yale University, New Haven, CT, USA.
Neuroimage. 2018 Feb 15;167:11-22. doi: 10.1016/j.neuroimage.2017.11.010. Epub 2017 Nov 6.
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
基于连接体的预测建模(CPM;Finn 等人,2015 年;Shen 等人,2017 年)最近被开发出来,用于从 fMRI 测量的功能连接(FC)预测个体差异的特质和行为,包括流体智力(Finn 等人,2015 年)和持续性注意力(Rosenberg 等人,2016a)。在这里,我们使用 CPM 框架,比较了三种不同的 FC 测量方法(皮尔逊相关系数、一致性和不和谐性)和两种不同的预测算法(线性和偏最小二乘 [PLS] 回归)在注意力功能方面的预测能力。一致性和不和谐性是最近提出的 FC 测量方法,分别跟踪同相同步和异相反相关(Meskaldji 等人,2015 年)。我们使用基于任务或静息状态的 FC 数据定义了基于连接体的模型,并测试了功能连接测量方法和特征选择/预测算法对个体注意力预测的影响。模型在训练数据集中使用单样本交叉验证进行内部验证,并使用三个独立数据集进行外部验证。训练数据集包括参与者执行持续性注意力任务和休息时采集的 fMRI 数据(N=25;Rosenberg 等人,2016a)。验证数据集包括:1)在执行停止信号任务和休息时采集的数据(N=83,包括 19 名在扫描前服用哌醋甲酯的参与者;Farr 等人,2014a;Rosenberg 等人,2016b),2)在注意力网络任务执行和休息时采集的数据(N=41,Rosenberg 等人,即将出版),3)来自 ADHD-200 联盟的静息状态数据和 ADHD 症状严重程度(N=113;Rosenberg 等人,2016a)。使用功能连接测量方法(皮尔逊相关系数、一致性和不和谐性)和预测算法(线性和 PLS 回归)的所有组合定义的模型预测了注意力能力,内部验证的预测和观察注意力测量之间的相关性高达 0.9,外部验证的相关性为 0.6(所有 p 值均小于 0.05)。基于任务数据训练的模型优于基于静息数据训练的模型。皮尔逊相关系数和一致性特征通常比不和谐性特征具有稍高的数值优势,而 PLS 回归模型通常优于线性回归模型。总体而言,除了与线性模型结合的相关特征(Rosenberg 等人,2016a)外,CPM 还可以考虑一致性特征和 PLS 回归。
J Neurosci. 2016-9-14
J Cogn Neurosci. 2017-10-17
Neuroimage. 2018-10-28
Imaging Neurosci (Camb). 2025-4-17
Dev Cogn Neurosci. 2025-3-25
Imaging Neurosci (Camb). 2024-11-18
Neuropsychopharmacology. 2025-5
Hum Brain Mapp. 2025-2-15
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-2
Brain Struct Funct. 2017-3-20
Trends Cogn Sci. 2017-4
Neuroimage Clin. 2016-10-11
Neuroimage. 2017-2-1
J Neurosci. 2016-9-14
IEEE Trans Biomed Eng. 2016-12