Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500, Larisa, Greece.
Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece.
Ann Nucl Med. 2022 Sep;36(9):823-833. doi: 10.1007/s12149-022-01762-4. Epub 2022 Jun 30.
The exploration and the implementation of a deep learning method using a state-of-the-art convolutional neural network for the classification of polar maps represent myocardial perfusion for the detection of coronary artery disease.
In the proposed research, the dataset includes stress and rest polar maps in attenuation-corrected (AC) and non-corrected (NAC) format, counting specifically 144 normal and 170 pathological cases. Due to the small number of the dataset, the following methods were implemented: First, transfer learning was conducted using VGG16, which is applied broadly in medical industry. Furthermore, data augmentation was utilized, wherein the images are rotated and flipped for expanding the dataset. Secondly, we evaluated a custom convolutional neural network called RGB CNN, which utilizes fewer parameters and is more lightweight. In addition, we utilized the k-fold validation for evaluating variability and overall performance of the examined model.
Our RGB CNN model achieved an agreement rating of 92.07% with a loss of 0.2519. The transfer learning technique (VGG16) attained 95.83% accuracy.
The proposed model could be an effective tool for medical classification problems, in the case of polar map data acquired from myocardial perfusion images.
探索并实现一种使用最先进的卷积神经网络的深度学习方法,用于分类极性图以检测冠状动脉疾病。
在提出的研究中,数据集包括在衰减校正(AC)和非校正(NAC)格式下的应激和休息极性图,具体包括 144 个正常病例和 170 个病理病例。由于数据集数量较少,因此实施了以下方法:首先,使用广泛应用于医疗行业的 VGG16 进行迁移学习。此外,还利用数据增强,通过旋转和翻转图像来扩展数据集。其次,我们评估了一种称为 RGB CNN 的自定义卷积神经网络,它使用的参数更少,更轻量级。此外,我们利用 k 折验证来评估所检查模型的可变性和整体性能。
我们的 RGB CNN 模型的一致性评分达到 92.07%,损失为 0.2519。迁移学习技术(VGG16)的准确率达到 95.83%。
对于从心肌灌注图像获得的极性图数据,所提出的模型可能是医学分类问题的有效工具。