Suppr超能文献

深度学习增强型核医学单光子发射计算机断层扫描成像应用于心脏研究。

Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies.

作者信息

Apostolopoulos Ioannis D, Papandrianos Nikolaos I, Feleki Anna, Moustakidis Serafeim, Papageorgiou Elpiniki I

机构信息

Department of Medical Physics, School of Medicine, University of Patras, 26504, Patras, Greece.

Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500, Larisa, Greece.

出版信息

EJNMMI Phys. 2023 Jan 27;10(1):6. doi: 10.1186/s40658-022-00522-7.

Abstract

Deep learning (DL) has a growing popularity and is a well-established method of artificial intelligence for data processing, especially for images and videos. Its applications in nuclear medicine are broad and include, among others, disease classification, image reconstruction, and image de-noising. Positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) are major image acquisition technologies in nuclear medicine. Though several studies have been conducted to apply DL in many nuclear medicine domains, such as cancer detection and classification, few studies have employed such methods for cardiovascular disease applications. The present paper reviews recent DL approaches focused on cardiac SPECT imaging. Extensive research identified fifty-five related studies, which are discussed. The review distinguishes between major application domains, including cardiovascular disease diagnosis, SPECT attenuation correction, image denoising, full-count image estimation, and image reconstruction. In addition, major findings and dominant techniques employed for the mentioned task are revealed. Current limitations of DL approaches and future research directions are discussed.

摘要

深度学习(DL)越来越受欢迎,是一种成熟的人工智能数据处理方法,尤其适用于图像和视频。它在核医学中的应用广泛,包括疾病分类、图像重建和图像去噪等。正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)是核医学中的主要图像采集技术。尽管已经进行了多项研究将深度学习应用于许多核医学领域,如癌症检测和分类,但很少有研究将此类方法用于心血管疾病应用。本文综述了近期专注于心脏SPECT成像的深度学习方法。广泛的研究确定了55项相关研究,并对其进行了讨论。该综述区分了主要应用领域,包括心血管疾病诊断、SPECT衰减校正、图像去噪、全计数图像估计和图像重建。此外,还揭示了用于上述任务的主要发现和主导技术。讨论了深度学习方法当前的局限性和未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f03/9883373/1d07ddd7bbce/40658_2022_522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验