Center for One Health Research, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America.
Department of Epidemiology, University of Washington, Seattle, Washington, United States of America.
PLoS Negl Trop Dis. 2022 Jun 30;16(6):e0010479. doi: 10.1371/journal.pntd.0010479. eCollection 2022 Jun.
Dengue fever is the most common arboviral disease in humans, with an estimated 50-100 million annual infections worldwide. Dengue fever cases have increased substantially in the past four decades, driven largely by anthropogenic factors including climate change. More than half the population of Peru is at risk of dengue infection and due to its geography, Peru is also particularly sensitive to the effects of El Niño Southern Oscillation (ENSO). Determining the effect of ENSO on the risk for dengue outbreaks is of particular public health relevance and may also be applicable to other Aedes-vectored viruses.
We conducted a time-series analysis at the level of the district-month, using surveillance data collected from January 2000 to September 2018 from all districts with a mean elevation suitable to survival of the mosquito vector (<2,500m), and ENSO and weather data from publicly-available datasets maintained by national and international agencies. We took a Bayesian hierarchical modeling approach to address correlation in space, and B-splines with four knots per year to address correlation in time. We furthermore conducted subgroup analyses by season and natural region.
We detected a positive and significant effect of temperature (°C, RR 1.14, 95% CI 1.13, 1.15, adjusted for precipitation) and ENSO (ICEN index: RR 1.17, 95% CI 1.15, 1.20; ONI index: RR 1.04, 95% CI 1.02, 1.07) on outbreak risk, but no evidence of a strong effect for precipitation after adjustment for temperature. Both natural region and season were found to be significant effect modifiers of the ENSO-dengue effect, with the effect of ENSO being stronger in the summer and the Selva Alta and Costa regions, compared with winter and Selva Baja and Sierra regions.
Our results provide strong evidence that temperature and ENSO have significant effects on dengue outbreaks in Peru, however these results interact with region and season, and are stronger for local ENSO impacts than remote ENSO impacts. These findings support optimization of a dengue early warning system based on local weather and climate monitoring, including where and when to deploy such a system and parameterization of ENSO events, and provide high-precision effect estimates for future climate and dengue modeling efforts.
登革热是人类中最常见的虫媒病毒病,全球每年估计有 5000 万至 1 亿例感染。在过去的四十年中,登革热病例大幅增加,主要原因是气候变化等人为因素。秘鲁超过一半的人口面临登革热感染的风险,而且由于其地理位置,秘鲁也特别容易受到厄尔尼诺-南方涛动(ENSO)的影响。确定 ENSO 对登革热爆发风险的影响具有特别重要的公共卫生意义,也可能适用于其他由埃及伊蚊传播的病毒。
我们在地区-月份的水平上进行了时间序列分析,使用 2000 年 1 月至 2018 年 9 月期间从所有地区收集的监测数据,这些地区的平均海拔适合蚊子生存(<2500 米),以及来自国家和国际机构维护的公共数据集的 ENSO 和天气数据。我们采用贝叶斯层次模型方法来解决空间相关性,并用每年 4 个结的 B 样条来解决时间相关性。我们还按季节和自然区域进行了亚组分析。
我们发现温度(°C,RR 1.14,95%CI 1.13,1.15,调整后为降水)和 ENSO(ICEN 指数:RR 1.17,95%CI 1.15,1.20;ONI 指数:RR 1.04,95%CI 1.02,1.07)对爆发风险有正向且显著的影响,但在调整温度后,降水对爆发风险没有很强的影响。自然区域和季节都被发现是 ENSO-登革热效应的显著影响因素,与冬季和 Selva Baja 和 Sierra 地区相比,夏季和 Selva Alta 和 Costa 地区的 ENSO 效应更强。
我们的结果提供了强有力的证据表明,温度和 ENSO 对秘鲁的登革热爆发有显著影响,但这些结果与地区和季节相互作用,并且对本地 ENSO 影响的影响大于对远程 ENSO 影响的影响。这些发现支持基于当地天气和气候监测优化登革热预警系统,包括部署系统的地点和时间以及 ENSO 事件的参数化,并为未来的气候和登革热建模工作提供高精度的影响估计。