Mills Cathal, Donnelly Christl A
Department of Statistics, University of Oxford, Oxford, United Kingdom.
Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
PLoS Negl Trop Dis. 2024 Dec 4;18(12):e0012596. doi: 10.1371/journal.pntd.0012596. eCollection 2024 Dec.
Amid profound climate change, incidence of dengue continues to rise and expand in distribution across the world. Here, we analysed dengue in three coastal departments of Peru which have recently experienced public health emergencies during the worst dengue crises in Latin American history. We developed a climate-based spatiotemporal modelling framework to model monthly incidence of new dengue cases in Piura, Tumbes, and Lambayeque over 140 months from 2010 to 2021. The framework enabled accurate description of in-sample and out-of-sample dengue incidence trends across the departments, as well as the characterisation of the timing, structure, and intensity of climatic relationships with human dengue incidence. In terms of dengue incidence rate (DIR) risk factors, we inferred non-linear and delayed effects of greater monthly mean maximum temperatures, extreme precipitation, sustained drought conditions, and extremes of a Peruvian-specific indicator of the El Niño Southern Oscillation. Building on our model-based understanding of climatic influences, we performed climate-model-based forecasting of dengue incidence across 2018 to 2021 with a forecast horizon of one month. Our framework enabled representative, reliable forecasts of future dengue outbreaks, including correct classification of 100% of all future outbreaks with DIR ≥ 50 (or 150) per 100,000, whilst retaining relatively low probability of 0.12 (0.05) for false alarms. Therefore, our model framework and analysis may be used by public health authorities to i) understand climatic drivers of dengue incidence, and ii) alongside our forecasts, to mitigate impacts of dengue outbreaks and potential public health emergencies by informing early warning systems and deployment of vector control resources.
在深刻的气候变化背景下,登革热的发病率在全球范围内持续上升且分布范围不断扩大。在此,我们分析了秘鲁三个沿海省份的登革热情况,这些省份最近在拉丁美洲历史上最严重的登革热危机期间经历了公共卫生紧急事件。我们开发了一个基于气候的时空建模框架,以模拟2010年至2021年140个月期间皮斯科、通贝斯和兰巴耶克新登革热病例的月度发病率。该框架能够准确描述各省份样本内和样本外的登革热发病率趋势,以及气候与人类登革热发病率之间关系的时间、结构和强度特征。就登革热发病率(DIR)风险因素而言,我们推断每月平均最高温度升高、极端降水、持续干旱条件以及厄尔尼诺南方涛动的秘鲁特定指标极端值存在非线性和延迟效应。基于我们对气候影响的模型理解,我们对2018年至2021年的登革热发病率进行了基于气候模型的预测,预测期为一个月。我们的框架能够对未来登革热疫情进行具有代表性、可靠的预测,包括正确分类所有未来发病率≥每10万例50(或150)的疫情,同时误报概率相对较低,为0.12(0.05)。因此,公共卫生当局可使用我们的模型框架和分析结果来:i)了解登革热发病率的气候驱动因素;ii)结合我们的预测,通过为早期预警系统和病媒控制资源的部署提供信息,减轻登革热疫情和潜在公共卫生紧急事件的影响。