Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.
J Am Chem Soc. 2024 May 22;146(20):14328-14340. doi: 10.1021/jacs.4c03994. Epub 2024 May 10.
The Gram-negative selective antibiotic darobactin A has attracted interest owing to its intriguing fused bicyclic structure and unique targeting of the outer membrane protein BamA. Darobactin, a ribosomally synthesized and post-translationally modified peptide (RiPP), is produced by a radical -adenosyl methionine (rSAM)-dependent enzyme (DarE) and contains one ether and one C-C cross-link. Herein, we analyze the substrate tolerance of DarE and describe an underlying catalytic principle of the enzyme. These efforts produced 51 enzymatically modified darobactin variants, revealing that DarE can install the ether and C-C cross-links independently and in different locations on the substrate. Notable variants with fused bicyclic structures were characterized, including darobactin W3Y, with a non-Trp residue at the twice-modified central position, and darobactin K5F, which displays a fused diether ring pattern. While lacking antibiotic activity, quantum mechanical modeling of darobactins W3Y and K5F aided in the elucidation of the requisite features for high-affinity BamA engagement. We also provide experimental evidence for β-oxo modification, which adds support for a proposed DarE mechanism. Based on these results, ether and C-C cross-link formation was investigated computationally, and it was determined that more stable and longer-lived aromatic Cβ radicals correlated with ether formation. Further, molecular docking and transition state structures based on high-level quantum mechanical calculations support the different indole connectivity observed for ether (Trp-C7) and C-C (Trp-C6) cross-links. Finally, mutational analysis and protein structural predictions identified substrate residues that govern engagement to DarE. Our work informs on darobactin scaffold engineering and further unveils the underlying principles of rSAM catalysis.
革兰氏阴性选择性抗生素达罗巴坦 A 因其引人入胜的融合双环结构和对外膜蛋白 BamA 的独特靶向而引起关注。达罗巴坦 A 是一种核糖体合成和翻译后修饰的肽(RiPP),由一种依赖于自由基 - 腺苷甲硫氨酸(rSAM)的酶(DarE)产生,含有一个醚和一个 C-C 交叉键。本文分析了 DarE 的底物耐受性,并描述了该酶的潜在催化原理。这些努力产生了 51 种酶修饰的达罗巴坦变体,表明 DarE 可以独立地和在不同的位置在底物上安装醚和 C-C 交叉键。对具有融合双环结构的显著变体进行了表征,包括达罗巴坦 W3Y,其中在两次修饰的中央位置具有非色氨酸残基,以及达罗巴坦 K5F,其显示融合的二醚环模式。虽然缺乏抗生素活性,但达罗巴坦 W3Y 和 K5F 的量子力学建模有助于阐明与 BamA 高亲和力结合所需的特征。我们还提供了 β- 酮修饰的实验证据,这为提出的 DarE 机制提供了支持。基于这些结果,对醚和 C-C 交叉键形成进行了计算研究,并且确定更稳定和更持久的芳香 Cβ 自由基与醚形成相关。此外,基于高级量子力学计算的分子对接和过渡态结构支持醚(色氨酸-C7)和 C-C(色氨酸-C6)交叉键观察到的不同吲哚连接。最后,突变分析和蛋白质结构预测确定了控制与 DarE 结合的底物残基。我们的工作为达罗巴坦支架工程提供了信息,并进一步揭示了 rSAM 催化的基本原理。