Suppr超能文献

全自动 3D 左心室二尖瓣复合体分割与缺血性二尖瓣反流的仿射建模。

Fully Automated 3D Segmentation and Diffeomorphic Medial Modeling of the Left Ventricle Mitral Valve Complex in Ischemic Mitral Regurgitation.

机构信息

Division of Cardiothoracic Surgery, The Ohio State University, Columbus, OH, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA.

Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Med Image Anal. 2022 Aug;80:102513. doi: 10.1016/j.media.2022.102513. Epub 2022 Jun 12.

Abstract

There is an urgent unmet need to develop a fully-automated image-based left ventricle mitral valve analysis tool to support surgical decision making for ischemic mitral regurgitation patients. This requires an automated tool for segmentation and modeling of the left ventricle and mitral valve from immediate pre-operative 3D transesophageal echocardiography. Previous works have presented methods for semi-automatically segmenting and modeling the mitral valve, but do not include the left ventricle and do not avoid self-intersection of the mitral valve leaflets during shape modeling. In this study, we develop and validate a fully automated algorithm for segmentation and shape modeling of the left ventricular mitral valve complex from pre-operative 3D transesophageal echocardiography. We performed a 3-fold nested cross validation study on two datasets from separate institutions to evaluate automated segmentations generated by nnU-net with the expert manual segmentation which yielded average overall Dice scores of 0.82±0.03 (set A), 0.87±0.08 (set B) respectively. A deformable medial template was subsequently fitted to the segmentation to generate shape models. Comparison of shape models to the manual and automatically generated segmentations resulted in an average Dice score of 0.93-0.94 and 0.75-0.81 for the left ventricle and mitral valve, respectively. This is a substantial step towards automatically analyzing the left ventricle mitral valve complex in the operating room.

摘要

目前迫切需要开发一种完全自动化的基于图像的左心室二尖瓣分析工具,以支持缺血性二尖瓣反流患者的手术决策。这需要一种自动化工具,用于从即刻术前 3D 经食管超声心动图中分割和建模左心室和二尖瓣。以前的工作已经提出了半自动分割和建模二尖瓣的方法,但不包括左心室,并且在形状建模过程中不能避免二尖瓣瓣叶的自交。在这项研究中,我们开发并验证了一种从术前 3D 经食管超声心动图自动分割和建模左心室二尖瓣复合体的算法。我们在来自两个不同机构的两个数据集上进行了三折嵌套交叉验证研究,以评估 nnU-net 生成的自动分割与专家手动分割的吻合程度,平均总体 Dice 评分分别为 0.82±0.03(数据集 A)和 0.87±0.08(数据集 B)。随后,将可变形中膜模板拟合到分割中,以生成形状模型。将形状模型与手动和自动生成的分割进行比较,左心室和二尖瓣的平均 Dice 评分分别为 0.93-0.94 和 0.75-0.81。这是朝着在手术室中自动分析左心室二尖瓣复合体迈出的实质性一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验