Suppr超能文献

基于无监督学习的使用结构约束无监督生成注意网络的胸部 MRI-CT 转换方法。

Unsupervised-learning-based method for chest MRI-CT transformation using structure constrained unsupervised generative attention networks.

机构信息

Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.

GE Healthcare, Hino, Japan.

出版信息

Sci Rep. 2022 Jun 30;12(1):11090. doi: 10.1038/s41598-022-14677-x.

Abstract

The integrated positron emission tomography/magnetic resonance imaging (PET/MRI) scanner simultaneously acquires metabolic information via PET and morphological information using MRI. However, attenuation correction, which is necessary for quantitative PET evaluation, is difficult as it requires the generation of attenuation-correction maps from MRI, which has no direct relationship with the gamma-ray attenuation information. MRI-based bone tissue segmentation is potentially available for attenuation correction in relatively rigid and fixed organs such as the head and pelvis regions. However, this is challenging for the chest region because of respiratory and cardiac motions in the chest, its anatomically complicated structure, and the thin bone cortex. We propose a new method using unsupervised generative attentional networks with adaptive layer-instance normalisation for image-to-image translation (U-GAT-IT), which specialised in unpaired image transformation based on attention maps for image transformation. We added the modality-independent neighbourhood descriptor (MIND) to the loss of U-GAT-IT to guarantee anatomical consistency in the image transformation between different domains. Our proposed method obtained a synthesised computed tomography of the chest. Experimental results showed that our method outperforms current approaches. The study findings suggest the possibility of synthesising clinically acceptable computed tomography images from chest MRI with minimal changes in anatomical structures without human annotation.

摘要

正电子发射断层扫描/磁共振成像(PET/MRI)扫描仪通过 PET 同时获取代谢信息,通过 MRI 获取形态信息。然而,衰减校正对于定量 PET 评估是必要的,因为它需要从 MRI 生成衰减校正图,而 MRI 与伽马射线衰减信息没有直接关系。基于 MRI 的骨组织分割对于头部和骨盆等相对刚性和固定的器官的衰减校正可能是可行的。然而,由于胸部的呼吸和心脏运动、其解剖结构复杂以及骨皮质较薄,这对于胸部区域来说是具有挑战性的。我们提出了一种新的方法,使用基于无监督生成注意网络的自适应层实例归一化进行图像到图像转换(U-GAT-IT),该方法专门用于基于注意力图的图像转换的非配对图像转换。我们将模态独立邻域描述符(MIND)添加到 U-GAT-IT 的损失中,以保证不同域之间的图像转换的解剖一致性。我们提出的方法获得了胸部的合成 CT。实验结果表明,我们的方法优于当前方法。研究结果表明,有可能在不进行人工注释的情况下,从胸部 MRI 合成出具有最小解剖结构变化的临床可接受的 CT 图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca3/9247083/a1baebb6e000/41598_2022_14677_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验