Suppr超能文献

基于磁共振成像(MRI)的伪CT合成:利用解剖特征和交替随机森林与迭代优化模型

MRI-based pseudo CT synthesis using anatomical signature and alternating random forest with iterative refinement model.

作者信息

Lei Yang, Jeong Jiwoong Jason, Wang Tonghe, Shu Hui-Kuo, Patel Pretesh, Tian Sibo, Liu Tian, Shim Hyunsuk, Mao Hui, Jani Ashesh B, Curran Walter J, Yang Xiaofeng

机构信息

Emory University, Winship Cancer Institute, Department of Radiation Oncology, Atlanta, Georgia, United States.

Emory University, Winship Cancer Institute, Department of Radiology and Imaging Sciences, Atlanta, Georgia, United States.

出版信息

J Med Imaging (Bellingham). 2018 Oct;5(4):043504. doi: 10.1117/1.JMI.5.4.043504. Epub 2018 Dec 5.

Abstract

We develop a learning-based method to generate patient-specific pseudo computed tomography (CT) from routinely acquired magnetic resonance imaging (MRI) for potential MRI-based radiotherapy treatment planning. The proposed pseudo CT (PCT) synthesis method consists of a training stage and a synthesizing stage. During the training stage, patch-based features are extracted from MRIs. Using a feature selection, the most informative features are identified as an anatomical signature to train a sequence of alternating random forests based on an iterative refinement model. During the synthesizing stage, we feed the anatomical signatures extracted from an MRI into the sequence of well-trained forests for a PCT synthesis. Our PCT was compared with original CT (ground truth) to quantitatively assess the synthesis accuracy. The mean absolute error, peak signal-to-noise ratio, and normalized cross-correlation indices were , , and for 14 patients' brain data and , , and for 12 patients' pelvic data, respectively. We have investigated a learning-based approach to synthesize CTs from routine MRIs and demonstrated its feasibility and reliability. The proposed PCT synthesis technique can be a useful tool for MRI-based radiation treatment planning.

摘要

我们开发了一种基于学习的方法,用于从常规获取的磁共振成像(MRI)生成患者特异性的伪计算机断层扫描(CT),以用于基于MRI的潜在放射治疗计划。所提出的伪CT(PCT)合成方法包括一个训练阶段和一个合成阶段。在训练阶段,从MRI中提取基于补丁的特征。通过特征选择,将最具信息性的特征识别为解剖学特征,以基于迭代细化模型训练一系列交替随机森林。在合成阶段,我们将从MRI中提取的解剖学特征输入到经过良好训练的森林序列中进行PCT合成。我们将我们的PCT与原始CT(真实情况)进行比较,以定量评估合成准确性。对于14例患者的脑部数据,平均绝对误差、峰值信噪比和归一化互相关指数分别为 、 和 ;对于12例患者的盆腔数据,分别为 、 和 。我们研究了一种基于学习的方法,从常规MRI合成CT,并证明了其可行性和可靠性。所提出的PCT合成技术可以成为基于MRI的放射治疗计划的有用工具。

相似文献

5
Pseudo CT Estimation using Patch-based Joint Dictionary Learning.基于块的联合字典学习的伪CT估计
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5150-5153. doi: 10.1109/EMBC.2018.8513475.

引用本文的文献

4
A review of PET attenuation correction methods for PET-MR.PET-MR的PET衰减校正方法综述
EJNMMI Phys. 2023 Sep 11;10(1):52. doi: 10.1186/s40658-023-00569-0.
9
MRI-Based Proton Treatment Planning for Base of Skull Tumors.基于MRI的颅底肿瘤质子治疗计划
Int J Part Ther. 2019 Fall;6(2):12-25. doi: 10.14338/IJPT-19-00062.1. Epub 2019 Sep 30.

本文引用的文献

4
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.
6
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
10
Radiotherapy planning using MRI.使用磁共振成像进行放射治疗计划
Phys Med Biol. 2015 Nov 21;60(22):R323-61. doi: 10.1088/0031-9155/60/22/R323. Epub 2015 Oct 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验