Zhou Jiamei, Wang Wenjie, Zhang Qiuyang, Zhang Zijun, Guo Jiangna, Yan Feng
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
Hematology Center, Cyrus Tang Medical Institute, Soochow University Suzhou 215123 China.
Chem Sci. 2022 May 27;13(23):6967-6981. doi: 10.1039/d2sc01740g. eCollection 2022 Jun 15.
Pandemic and epidemic spread of antibiotic-resistant bacterial infections would result in a huge number of fatalities globally. To combat antibiotic-resistant pathogens, new antimicrobial strategies should be explored and developed to confront bacteria without acquiring or increasing drug-resistance. Here, oxygen saturated perfluorohexane (PFH)-loaded mesoporous carbon nanoparticles (CIL@ICG/PFH@O) with photothermal therapy (PTT) and enhanced photodynamic therapy (PDT) utility are developed for antibacterial applications. Ionic liquid groups are grafted onto the surface of mesoporous carbon nanoparticles, followed by anion-exchange with the anionic photosensitizer indocyanine green (ICG) and loading oxygen saturated PFH to prepare CIL@ICG/PFH@O. These CIL@ICG/PFH@O nanoparticles exhibit effective PTT and enhanced PDT properties simultaneously upon 808 nm light irradiation. assays demonstrate that CIL@ICG/PFH@O shows a synergistic antibacterial action against antibiotic-resistant pathogens (methicillin-resistant and kanamycin-resistant ). Moreover, CIL@ICG/PFH@O could effectively kill drug-resistant bacteria to relieve inflammation and eliminate methicillin-resistant -wound infection under NIR irradiation, and the released oxygen can increase collagen deposition, epithelial tissue formation and blood vessel formation to promote wound healing while enhancing the PDT effect. This study proposes a platform with enhanced PTT/PDT effects for effective, controlled, and precise treatment of topical drug-resistant bacterial infections.
抗生素耐药性细菌感染的大流行和流行传播将在全球导致大量死亡。为了对抗抗生素耐药性病原体,应探索和开发新的抗菌策略,以对抗细菌而不产生或增加耐药性。在此,开发了具有光热疗法(PTT)和增强光动力疗法(PDT)效用的载有饱和氧全氟己烷(PFH)的介孔碳纳米颗粒(CIL@ICG/PFH@O)用于抗菌应用。将离子液体基团接枝到介孔碳纳米颗粒表面,然后与阴离子光敏剂吲哚菁绿(ICG)进行阴离子交换并负载饱和氧PFH以制备CIL@ICG/PFH@O。这些CIL@ICG/PFH@O纳米颗粒在808nm光照射下同时表现出有效的PTT和增强的PDT性能。 试验表明,CIL@ICG/PFH@O对抗生素耐药性病原体(耐甲氧西林 和耐卡那霉素 )具有协同抗菌作用。此外,CIL@ICG/PFH@O可以在近红外照射下有效杀死耐药细菌 以减轻炎症并消除耐甲氧西林 伤口感染,并且释放的氧气可以增加胶原蛋白沉积、上皮组织形成和血管形成,从而在增强PDT效果的同时促进伤口愈合。本研究提出了一个具有增强PTT/PDT效果的平台,用于有效、可控和精确地治疗局部耐药细菌感染。