Thorsen Rasmus Ø, Hulleman Christiaan N, Rieger Bernd, Stallinga Sjoerd
Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
These authors contributed equally.
Biomed Opt Express. 2022 Apr 21;13(5):2835-2858. doi: 10.1364/BOE.452159. eCollection 2022 May 1.
Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX), we have adapted the idea towards the modulation of excitation polarization to enhance the orientation precision. For this modality two modes are analyzed: i) normally incident excitation with three polarization steps to retrieve the in-plane angle of emitters and ii) obliquely incident excitation with p-polarization with five different azimuthal angles of incidence to retrieve the full orientation. Firstly, we present a theoretical study of the lower precision limit with a Cramér-Rao bound for these modes. For the oblique incidence mode we find a favorable isotropic orientation precision for all molecular orientations if the polar angle of incidence is equal to degrees. Secondly, a simulation study is performed to assess the performance for low signal-to-background ratios and how inaccurate illumination polarization angles affect the outcome. We show that a precision, at the Cramér-Rao bound (CRB) limit, of just 2.4 and 1.6 degrees in the azimuthal and polar angles can be achieved with only 1000 detected signal photons and 10 background photons per pixel (about twice better than reported earlier). Lastly, the alignment and calibration of an optical microscope with polarization control is described in detail. With this microscope a proof-of-principle experiment is carried out, demonstrating an experimental in-plane precision close to the CRB limit for signal photon counts ranging from 400 to 10,000.
将方向估计与定位显微镜相结合,为在纳米尺度上分析生物分子的潜在方向提供了可能性。受近期通过移动激发模式(MINFLUX、SIMFLUX)提高定位精度的启发,我们将这一理念应用于激发偏振的调制,以提高方向精度。针对这种模式,分析了两种模式:i)具有三个偏振步骤的垂直入射激发,以获取发射器的面内角度;ii)具有p偏振的斜入射激发,具有五个不同的方位入射角,以获取完整的方向。首先,我们用克拉美罗界对这些模式的较低精度极限进行了理论研究。对于斜入射模式,我们发现如果入射角的极角等于 度,则对于所有分子方向都有良好的各向同性方向精度。其次,进行了模拟研究,以评估低信背比下的性能以及照明偏振角不准确如何影响结果。我们表明,在每像素仅1000个检测到的信号光子和10个背景光子的情况下,在克拉美罗界(CRB)极限下,方位角和极角的精度分别可达2.4度和1.6度(比之前报道的约好两倍)。最后,详细描述了具有偏振控制的光学显微镜的对准和校准。使用该显微镜进行了原理验证实验,证明了对于400至10000范围内的信号光子计数,实验面内精度接近CRB极限。