Suppr超能文献

机器学习助力人体多光源定量光声血氧成像。

Machine learning enabled multiple illumination quantitative optoacoustic oximetry imaging in humans.

作者信息

Kirchner Thomas, Jaeger Michael, Frenz Martin

机构信息

Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.

Biomedical Photonics, Institute of Applied Physics, University of Bern, Bern, Switzerland.

出版信息

Biomed Opt Express. 2022 Apr 5;13(5):2655-2667. doi: 10.1364/BOE.455514. eCollection 2022 May 1.

Abstract

Optoacoustic (OA) imaging is a promising modality for quantifying blood oxygen saturation (sO) in various biomedical applications - in diagnosis, monitoring of organ function, or even tumor treatment planning. We present an accurate and practically feasible real-time capable method for quantitative imaging of sO based on combining multispectral (MS) and multiple illumination (MI) OA imaging with learned spectral decoloring (LSD). For this purpose we developed a hybrid real-time MI MS OA imaging setup with ultrasound (US) imaging capability; we trained gradient boosting machines on MI spectrally colored absorbed energy spectra generated by generic Monte Carlo simulations and used the trained models to estimate sO on real OA measurements. We validated MI-LSD and on image sequences of radial arteries and accompanying veins of five healthy human volunteers. We compared the performance of the method to prior LSD work and conventional linear unmixing. MI-LSD provided highly accurate results and consistently plausible results . This preliminary study shows a potentially high applicability of quantitative OA oximetry imaging, using our method.

摘要

光声(OA)成像在各种生物医学应用中,如诊断、器官功能监测甚至肿瘤治疗规划等方面,是一种用于定量测量血氧饱和度(sO)的很有前景的模态。我们提出了一种基于多光谱(MS)和多照明(MI)OA成像与学习光谱脱色(LSD)相结合的准确且切实可行的实时定量sO成像方法。为此,我们开发了一种具有超声(US)成像能力的混合实时MI MS OA成像装置;我们在由通用蒙特卡罗模拟生成的MI光谱着色吸收能量光谱上训练梯度提升机,并使用训练好的模型对实际OA测量值进行sO估计。我们在五名健康人类志愿者的桡动脉和伴行静脉的图像序列上验证了MI-LSD。我们将该方法的性能与先前的LSD工作和传统线性解混进行了比较。MI-LSD提供了高度准确的结果和始终合理的结果。这项初步研究表明,使用我们的方法,定量OA血氧测定成像具有潜在的高适用性。

相似文献

6
A Bayesian Approach to Eigenspectra Optoacoustic Tomography.贝叶斯方法在特征光谱光声断层扫描中的应用。
IEEE Trans Med Imaging. 2018 Sep;37(9):2070-2079. doi: 10.1109/TMI.2018.2815760. Epub 2018 Mar 14.

本文引用的文献

6
Deep learning for biomedical photoacoustic imaging: A review.用于生物医学光声成像的深度学习:综述
Photoacoustics. 2021 Feb 2;22:100241. doi: 10.1016/j.pacs.2021.100241. eCollection 2021 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验