Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, QC, Canada.
Methods Mol Biol. 2022;2515:59-74. doi: 10.1007/978-1-0716-2409-8_4.
A central question in neuroscience is how 100 billion neurons come together to build the human brain. The wiring, morphology, survival, and death of each neuron are controlled by genes that encode intrinsic and extrinsic factors. Determining the function of these genes at a high spatiotemporal resolution is a critical step toward understanding brain development and function. Moreover, an increasing number of somatic mutations are being discovered in many brain disorders. However, neurons are embedded in complex networks, making it difficult to distinguish cell-autonomous from non-cell-autonomous function of any given gene in the brain. Here, I describe MADM (mosaic analysis with double markers), a genetic method that allows for labeling and manipulating gene function at the single-cell level within the mouse brain. I present mouse breeding schemes to employ MADM analysis and important considerations for experimental design. This powerful system can be adapted to make fundamental neuroscience discoveries by targeting genetically defined cell types in the mouse brain with high spatiotemporal resolution.
神经科学的一个核心问题是如何将 1000 亿个神经元组合起来构建人类大脑。每个神经元的连接、形态、存活和死亡都受到编码内在和外在因素的基因的控制。以高时空分辨率确定这些基因的功能是理解大脑发育和功能的关键步骤。此外,在许多脑部疾病中发现了越来越多的体细胞突变。然而,神经元嵌入在复杂的网络中,使得很难区分给定基因在大脑中的细胞自主功能和非细胞自主功能。在这里,我描述了 MADM(双标记马赛克分析),这是一种遗传方法,允许在小鼠大脑内的单细胞水平上标记和操纵基因功能。我提出了小鼠繁殖方案,以采用 MADM 分析,并介绍了实验设计的重要考虑因素。通过以高时空分辨率针对小鼠大脑中的遗传定义细胞类型进行靶向,这个强大的系统可以用于进行基础神经科学发现。