Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, QC, H3G 1A3, Canada.
Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, QC, H3G 1A3, Canada.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2210122119. doi: 10.1073/pnas.2210122119. Epub 2022 Oct 18.
Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, (), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in -deficient brains. Deletion of from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting from the -lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
脑回路的过度兴奋是自闭症谱系障碍(ASD)的一个共同特征。染色质结合蛋白的基因缺失()会导致 Smith-Magenis 综合征(SMS)。SMS 是一种与智力障碍、自闭症特征、适应不良行为、明显癫痫发作和异常脑电图(EEG)模式相关的综合征性 ASD。SMS 中异常脑活动的分子和神经机制仍不清楚。在这里,我们展示了 panneural 在小鼠中的缺失导致体内癫痫易感性增加和海马癫痫持续时间延长,以及体外齿状回群体峰增加。对神经元活性的全脑映射确定了边缘系统内的选择性细胞类型,包括海马齿状回颗粒细胞(dGCs),在-缺陷大脑中,化学惊厥剂给药或感觉体验会使其过度激活。谷氨酸能神经元而非γ-氨基丁酸能(GABAergic)神经元中的 缺失负责癫痫易感性增加。从 -谱系谷氨酸能神经元中删除 会导致异常的 dGC 特性,包括兴奋性突触传递增加和内在兴奋性增加。我们的工作通过确定 Rai1 作为 dGC 内在和突触兴奋性的负调节剂,揭示了 SMS 中神经元过度兴奋的机制。