Suppr超能文献

TSC2-mTORC1轴调节成年期生成的Gli1齿状颗粒细胞的形态发生和神经功能。

TSC2-mTORC1 axis regulates morphogenesis and neurological function of Gli1 adult-born dentate granule cells.

作者信息

Kowalczyk Max, Lee Yu-Ju, Huang Wei-Hsiang

机构信息

Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec H3G 1A3, Canada.

出版信息

Mol Biol Cell. 2025 Jan 1;36(1):br1. doi: 10.1091/mbc.E24-08-0366. Epub 2024 Nov 27.

Abstract

Aberrant adult hippocampal neurogenesis is implicated in neurological and mood disorders associated with dysregulation of the mechanistic target of rapamycin (mTOR). Understanding how the mTOR pathway shapes the functional development of different subpopulations of adult-born hippocampal neural stem cells will enable insight into potential therapeutic pathways for these disorders. Here we study how loss of TSC2, a regulator of mTOR pathway and a causal gene for tuberous sclerosis complex (TSC), affects dentate gyrus granule cell morphogenesis and hippocampal-dependent function. We found that mice with TSC2 specifically ablated from Gli1 adult-born neural stem cells showed neuronal hypertrophy, reduced NEUN expression, increased dendritic arborization, premature cellular senescence, and hypervascularization of the dentate gyrus. Neurologically, mice showed altered exploratory behavior, impaired spatial learning, abnormal contextual recall, and hypersensitivity to kainic acid-induced seizures. Importantly, genetic reduction of , essential for mTORC1 signaling, rebalanced mTORC1 signaling and mitigated molecular, cellular, and neurological deficits in mice. This study uncovered functions of TSC2 in Gli1 adult-born neural stem cells and highlights RAPTOR as a potential therapeutic target for reversing disease features associated with mutations.

摘要

异常的成年海马神经发生与雷帕霉素机制靶点(mTOR)失调相关的神经和情绪障碍有关。了解mTOR信号通路如何塑造成年海马神经干细胞不同亚群的功能发育,将有助于深入了解这些疾病的潜在治疗途径。在这里,我们研究了mTOR信号通路的调节因子TSC2(结节性硬化症复合体(TSC)的致病基因)的缺失如何影响齿状回颗粒细胞的形态发生和海马依赖性功能。我们发现,从Gli1成年神经干细胞中特异性敲除TSC2的小鼠表现出神经元肥大、NEUN表达减少、树突分支增加、细胞过早衰老以及齿状回血管生成增加。在神经方面,这些小鼠表现出探索行为改变、空间学习受损、情境记忆异常以及对红藻氨酸诱导的癫痫发作过敏。重要的是,对mTORC1信号传导至关重要的[此处原文缺失相关基因]的基因减少,使mTORC1信号重新平衡,并减轻了[此处原文缺失相关小鼠模型名称]小鼠的分子、细胞和神经缺陷。这项研究揭示了TSC2在Gli1成年神经干细胞中的功能,并强调RAPTOR作为逆转与[此处原文缺失相关基因]突变相关疾病特征的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91b7/11742115/93191a8e969d/mbc-36-br1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验