Opt Lett. 2022 Jul 1;47(13):3239-3242. doi: 10.1364/OL.458453.
In this Letter, the neural network long short-term memory (LSTM) is used to quickly and accurately predict the polarization sensitivity of a nanofin metasurface. In the forward prediction, we construct a deep neural network (DNN) with the same structure for comparison with LSTM. The test results show that LSTM has a higher accuracy and better robustness than DNN in similar cases. In the inverse design, we directly build an LSTM to reverse the design similar to the forward prediction network. By inputting the extinction ratio value in 8-12 µm, the inverse network can directly provide the unit cell geometry of the nanofin metasurface. Compared with other methods used to inverse design photonic structures using deep learning, our method is more direct because no other networks are introduced.
在这封信件中,神经网络长短期记忆 (LSTM) 被用于快速、准确地预测纳米鳍超表面的偏振灵敏度。在正向预测中,我们构建了一个具有相同结构的深度神经网络 (DNN) 来与 LSTM 进行比较。测试结果表明,在类似情况下,LSTM 的准确性和鲁棒性均高于 DNN。在反向设计中,我们直接构建了一个 LSTM 来反转类似于正向预测网络的设计。通过输入 8-12 µm 的消光比值,反向网络可以直接提供纳米鳍超表面的单元结构。与使用深度学习进行光子结构反向设计的其他方法相比,我们的方法更加直接,因为没有引入其他网络。