Suppr超能文献

基于深度学习的缺血性心脑血管疾病风险预测解构。

Deconstruction of Risk Prediction of Ischemic Cardiovascular and Cerebrovascular Diseases Based on Deep Learning.

机构信息

Unit 36, Department of Neurology, Daqing Oilfield General Hospital, Daqing 163714, Heilongjiang, China.

Daqing Oilfield General Hospital, Daqing 163714, Heilongjiang, China.

出版信息

Contrast Media Mol Imaging. 2022 Sep 30;2022:8478835. doi: 10.1155/2022/8478835. eCollection 2022.

Abstract

Over the years, with the widespread use of computer technology and the dramatic increase in electronic medical data, data-driven approaches to medical data analysis have emerged. However, the analysis of medical data remains challenging due to the mixed nature of the data, the incompleteness of many records, and the high level of noise. This paper proposes an improved neural network DBN-LSTM that combines a deep belief network (DBN) with a long short-term memory (LSTM) network. The subset of feature attributes processed by CFS-EGA is used for training, and the optimal selection test of the number of hidden layers is performed on the upper DBN in the process of training DBN-LSTM. At the same time, the validation set is combined to determine the hyperparameters of the LSTM. Construct the DNN, CNN, and long short-term memory (LSTM) network for comparative analysis with DBN-LSTM. Use the classification method to compare the average of the final results of the two experiments. The results show that the prediction accuracy of DBN-LSTM for cardiovascular and cerebrovascular diseases reaches 95.61%, which is higher than the three traditional neural networks.

摘要

多年来,随着计算机技术的广泛应用和电子医疗数据的急剧增加,出现了基于数据驱动的医学数据分析方法。然而,由于数据的混合性质、许多记录的不完整性以及高水平的噪声,医学数据的分析仍然具有挑战性。本文提出了一种改进的神经网络 DBN-LSTM,它将深度置信网络(DBN)与长短期记忆(LSTM)网络相结合。使用 CFS-EGA 处理的特征属性子集进行训练,并在训练 DBN-LSTM 的过程中对上层 DBN 进行隐藏层数的最优选择测试。同时,结合验证集确定 LSTM 的超参数。构建 DNN、CNN 和长短期记忆(LSTM)网络,与 DBN-LSTM 进行对比分析。使用分类方法比较两个实验的最终结果的平均值。结果表明,DBN-LSTM 对心脑血管疾病的预测准确率达到 95.61%,高于三种传统神经网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e807/9546720/a09864e3ce45/CMMI2022-8478835.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验