Suppr超能文献

用于电生理和生物相容界面的聚色氨酸薄膜的表面特性与形成。

Surface Characteristics and Formation of Polyserotonin Thin Films for Bioelectrical and Biocompatible Interfaces.

机构信息

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

Langmuir. 2022 Jul 19;38(28):8633-8642. doi: 10.1021/acs.langmuir.2c01045. Epub 2022 Jul 1.

Abstract

In this study, we examined the fundamental surface characteristics of a polyserotonin (pST) film, which is attractive as a bioelectrical and biocompatible interface of biosensors. The pST film can easily be modified on electrode materials such as Au by self-polymerization and electropolymerization. By a simple cytotoxicity test using nonadhesive living cells, we found that the pST film is biocompatible for culturing cells on it. This finding is also supported by the fact that the surface tension of the pST film is moderate for protein adsorptions. The pST film is thinner and smoother than a poly-dopamine film, the chemical structure of which is similar to that of the pST film, depending on the polymerization time, cycle, and temperature; thus, ST as the main monomer can facilitate the precise control of the thickness and roughness of functional polymer membranes on the nanometer order. In addition, the pST film is useful as a relatively insulative interface for preventing interfering species from approaching electrode surfaces without their nonspecific adsorption, depending on the surface charges of the pST film in solutions of different pHs. The formation of the pST film self-polymerized on electrode materials is derived from the adsorption of pST nanoparticles formed by oxidative polymerization under basic conditions; therefore, the process of pST film formation should be considered in the functionalization of the pST film as a bioelectrical interface that allows biomolecular recognition (e.g., molecularly imprinted polymer membrane) for its application to wearable and biocompatible biosensors.

摘要

在这项研究中,我们研究了多聚色氨酸 (pST) 薄膜的基本表面特性,该薄膜作为生物传感器的生物电和生物相容界面具有吸引力。pST 薄膜可以通过自聚合和电聚合很容易地修饰在金等电极材料上。通过使用非粘性活细胞进行简单的细胞毒性测试,我们发现 pST 薄膜对细胞在其表面上的培养是生物相容的。这一发现也得到了这样一个事实的支持,即 pST 薄膜的表面张力适中,有利于蛋白质吸附。pST 薄膜比聚多巴胺薄膜更薄、更光滑,聚多巴胺薄膜的化学结构与 pST 薄膜相似,这取决于聚合时间、循环和温度;因此,作为主要单体的 ST 可以促进对纳米级功能聚合物膜厚度和粗糙度的精确控制。此外,pST 薄膜可用作相对绝缘的界面,可防止干扰物质在不发生非特异性吸附的情况下接近电极表面,这取决于不同 pH 值溶液中 pST 薄膜的表面电荷。在电极材料上自聚合形成的 pST 薄膜源自在碱性条件下氧化聚合形成的 pST 纳米颗粒的吸附;因此,在将 pST 薄膜作为允许生物分子识别的生物电界面进行功能化(例如,分子印迹聚合物膜)时,应考虑 pST 薄膜形成过程,以便将其应用于可穿戴和生物相容的生物传感器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验