Suppr超能文献

基于 MRI 的放射组学列线图在评估早期子宫内膜腺癌中深肌层浸润的开发与验证。

Development and Validation of an MRI-based Radiomics Nomogram for Assessing Deep Myometrial Invasion in Early Stage Endometrial Adenocarcinoma.

机构信息

The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China; Department of MRI, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China.

MR Scientific Marketing, Siemens Healthcare, Shanghai, China.

出版信息

Acad Radiol. 2023 Apr;30(4):668-679. doi: 10.1016/j.acra.2022.05.017. Epub 2022 Jun 29.

Abstract

RATIONALE AND OBJECTIVES

To establish a radiomics nomogram for detecting deep myometrial invasion (DMI) in early stage endometrioid adenocarcinoma (EAC).

MATERIALS AND METHODS

A total of 266 patients with stage I EAC were divided into training (n = 185) and test groups (n = 81). Logistic regression were used to identify clinical predictors. Radiomics features were extracted and selected from multiparameter MR images. The important clinical factors and radiomics features were integrated into a nomogram. A receiver operating characteristic curve was used to evaluate the nomogram. Two radiologists evaluated MR images with or without the help of the nomogram to detect DMI. The clinical benefit of using the nomogram was evaluated by decision curve analysis (DCA) and by calculating net reclassification index (NRI) and integrated discrimination index (IDI).

RESULTS

Age and CA125 were independent clinical predictors. The area under the curves of the clinical parameters, radiomics signature and nomogram in evaluating DMI were 0.744, 0.869 and 0.883, respectively. The accuracies of the two radiologists increased from 79.0% and 80.2% to 90.1% and 92.5% when they used the nomogram. The NRI of the two radiologists were 0.262 and 0.318, and the IDI were 0.322 and 0.405. According to DCA, the nomogram showed a higher net benefit than the radiomics signature or unaided radiologists. Cross-validation showed the outcome of radiomics analysis may not be influenced by changes in field strength.

CONCLUSION

The radiomics nomogram based on radiomics features and clinical factors can help radiologists evaluate DMI and improve their accuracy in predicting DMI in early stage EAC.

摘要

背景与目的

建立一个针对早期子宫内膜样腺癌(EAC)的放射组学列线图,用于检测深层肌层浸润(DMI)。

材料与方法

共纳入 266 例 I 期 EAC 患者,分为训练组(n=185)和测试组(n=81)。使用逻辑回归识别临床预测因子。从多参数磁共振成像中提取和选择放射组学特征。将重要的临床因素和放射组学特征整合到一个列线图中。使用受试者工作特征曲线评估该列线图。两名放射科医生评估有无列线图辅助的磁共振图像以检测 DMI。通过决策曲线分析(DCA)和计算净重新分类指数(NRI)和综合判别指数(IDI)来评估列线图的临床获益。

结果

年龄和 CA125 是独立的临床预测因子。评估 DMI 的临床参数、放射组学特征和列线图的曲线下面积分别为 0.744、0.869 和 0.883。当两名放射科医生使用列线图时,他们的准确率从 79.0%和 80.2%提高到 90.1%和 92.5%。两名放射科医生的 NRI 分别为 0.262 和 0.318,IDI 分别为 0.322 和 0.405。根据 DCA,列线图比放射组学特征或无辅助的放射科医生具有更高的净获益。交叉验证表明,放射组学分析的结果可能不会受到磁场强度变化的影响。

结论

基于放射组学特征和临床因素的放射组学列线图可帮助放射科医生评估 DMI,并提高他们预测早期 EAC 中 DMI 的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验