Wang Yang, Li Xing, Liu Chang, Wang Yunqi, You Chunyu, Zhu Hong, Zheng Zhi, Zhang Ziyu, Jiang Guobang, Dong Xiang, Cai Tianjun, Tian Ziao, Di Zengfeng, Huang Gaoshan, Chen Xiangzhong, Song Enming, Cui Jizhai, Mei Yongfeng
International Institute of Intelligent Nanorobots and Nanosystems & State Key Laboratory of Surface Physics, College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai 200438, People's Republic of China.
Yiwu Research Institute of Fudan University, Zhejiang 322000, People's Republic of China.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2500680122. doi: 10.1073/pnas.2500680122. Epub 2025 Jun 17.
Microscopic robots exhibit efficient locomotion in liquids by leveraging fluid dynamics and chemical reactions to generate force asymmetry, thereby enabling critical applications in photonics and biomedicine. However, achieving controllable locomotion of such robots on terrestrial surfaces remains challenging because fluctuating adhesion on nonideal surfaces disrupts the necessary asymmetry for propulsion. Here, we present a microscopic robot composed of three-dimensional nanomembranes, which navigate diverse terrestrial surfaces with omnidirectional motion. We propose a general mechanism employing nonreciprocal shape morphing to generate stable asymmetric forces on surfaces. This nonreciprocal shape morphing is realized through a laser-actuated vanadium dioxide nanomembrane, leveraging the material's inherent hysteresis properties. We demonstrate that these robots can be fabricated in various shapes, ranging from simple square structures to bioinspired "bipedal" helical designs, enabling them to directionally navigate challenging surfaces such as paper, leaves, sand, and vertical walls. Furthermore, their omnidirectional motion facilitates applications in microassembly and microelectronic circuit integration. Additionally, we developed an artificial intelligence control algorithm based on reinforcement learning, enabling these robots to autonomously follow complex trajectories, such as tracing the phrase "hello world". Our study lays a theoretical and technological foundation for microscopic robots with terrestrial locomotion and paves a way for microscopic robots capable of operating on surfaces for advanced nanophotonic, microelectronic, and biomedical applications.
微型机器人通过利用流体动力学和化学反应来产生力的不对称性,从而在液体中展现出高效的运动能力,进而在光子学和生物医学领域实现关键应用。然而,要使此类机器人在地面上实现可控运动仍然具有挑战性,因为在非理想表面上波动的附着力会破坏推进所需的不对称性。在此,我们展示了一种由三维纳米膜组成的微型机器人,它能在各种地面上进行全方位运动。我们提出了一种利用非互易形状变形在表面产生稳定不对称力的通用机制。这种非互易形状变形是通过激光驱动的二氧化钒纳米膜实现的,利用了该材料固有的滞后特性。我们证明这些机器人可以制造成各种形状,从简单的方形结构到受生物启发的“双足”螺旋设计,使它们能够在诸如纸张、树叶、沙子和垂直墙壁等具有挑战性的表面上定向导航。此外,它们的全方位运动便于在微组装和微电子电路集成中应用。此外,我们基于强化学习开发了一种人工智能控制算法,使这些机器人能够自主跟随复杂轨迹,比如追踪“hello world”这句话。我们的研究为具有地面运动能力的微型机器人奠定了理论和技术基础,并为能够在表面上运行以用于先进纳米光子学、微电子学和生物医学应用的微型机器人铺平了道路。
Proc Natl Acad Sci U S A. 2025-6-24
Cochrane Database Syst Rev. 2022-5-20
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2022-10-4
Cochrane Database Syst Rev. 2018-6-25
Cochrane Database Syst Rev. 2021-10-27
Cochrane Database Syst Rev. 2008-7-16
Cochrane Database Syst Rev. 2018-7-12
Cochrane Database Syst Rev. 2021-4-19
Sci Robot. 2024-12-11
Science. 2024-11-29
Adv Intell Syst. 2022-10
Science. 2024-1-12
Science. 2023-12-8