Suppr超能文献

采用磁共振尿液代谢组学建立 2 型糖尿病患者早期肾脏疾病预测模型。

Using nuclear magnetic resonance urine metabolomics to develop a prediction model of early stages of renal disease in subjects with type 2 diabetes.

机构信息

Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Química Analítica, Monterrey, Nuevo León, México.

Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Medicina Interna - Unidad de Hígado, Monterrey, Nuevo León, México.

出版信息

J Pharm Biomed Anal. 2022 Sep 20;219:114885. doi: 10.1016/j.jpba.2022.114885. Epub 2022 Jun 18.

Abstract

Type 2 diabetes mellitus (DM2) is a multimorbidity, long-term condition, and one of the worldwide leading causes of chronic kidney disease (CKD) -a silent disease, usually detected when non-reversible renal damage have already occurred. New strategies and more effective laboratory methods are needed for more opportune diagnosis of DM2-CKD. This study comprises clinical parameters and nuclear magnetic resonance (NMR)-based urine metabolomics data from 60 individuals (20-65 years old, 67.7% females), sorted in 5 experimental groups (healthy subjects; diabetic patients without any clinical sign of CKD; and patients with mild, moderate, and severe DM2-CKD), according to KDIGO. DM2-CKD produces a continuous variation of the urine metabolome, characterized by an increase/decrement of a group of metabolites that can be used to monitor CKD progression (trigonelline, hippurate, phenylalanine, glycolate, dimethylamine, alanine, 2-hydroxybutyrate, lactate, and citrate). NMR profiles were used to obtain a statistical model, based on partial least squares analysis (PLS-DA) to discriminate among groups. The PLS-DA model yielded good validation parameters (sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic curve (ROC) plot: 0.692, 0.778 and 0.912, respectively) and, thus, it can differentiate between subjects with DM2-CKD in early stages, from subjects with a mild or severe condition. This metabolic signature exhibits a molecular variation associated to DM2-CKD, and data suggests it can be used to predict risk of DM2-CKD in patients without clinical signs of renal disease, offering a new alternative to current diagnosis methods.

摘要

2 型糖尿病(DM2)是一种多病共存、长期存在的疾病,也是全球慢性肾脏病(CKD)的主要病因之一——这种疾病通常在不可逆转的肾损伤发生后才被发现,是一种无声的疾病。为了更及时地诊断 2 型糖尿病合并 CKD,需要新的策略和更有效的实验室方法。

本研究纳入了 60 名个体(年龄 20-65 岁,女性占 67.7%)的临床参数和基于核磁共振(NMR)的尿液代谢组学数据,这些个体按照 KDIGO 标准分为 5 个实验组(健康受试者;无任何 CKD 临床迹象的糖尿病患者;以及轻度、中度和重度 2 型糖尿病合并 CKD 患者)。2 型糖尿病合并 CKD 会导致尿液代谢组发生连续变化,其特征是一组代谢物的增加/减少,这些代谢物可用于监测 CKD 进展(三甲胺、马尿酸、苯丙氨酸、甘醇酸、二甲胺、丙氨酸、2-羟基丁酸、乳酸和柠檬酸)。NMR 图谱用于获得基于偏最小二乘分析(PLS-DA)的统计模型,以区分不同组。PLS-DA 模型产生了良好的验证参数(灵敏度、特异性和受试者工作特征曲线(ROC)下面积(AUC)分别为 0.692、0.778 和 0.912),因此可以区分早期 2 型糖尿病合并 CKD 患者与轻度或重度患者。这种代谢特征显示出与 2 型糖尿病合并 CKD 相关的分子变化,并且数据表明它可以用于预测无肾脏疾病临床迹象的患者发生 2 型糖尿病合并 CKD 的风险,为当前的诊断方法提供了新的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验