Suppr超能文献

贝叶斯网络分析揭示了颅内动脉瘤破裂风险因素的相互作用。

Bayesian network analysis reveals the interplay of intracranial aneurysm rupture risk factors.

机构信息

Centre of Computational Health, Institute of Computational Life Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zürich, Switzerland; Institute of Computational Science, University of Zurich, Zürich, Switzerland.

Centre of Computational Health, Institute of Computational Life Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zürich, Switzerland.

出版信息

Comput Biol Med. 2022 Aug;147:105740. doi: 10.1016/j.compbiomed.2022.105740. Epub 2022 Jun 20.

Abstract

Clinical decision making regarding the treatment of unruptured intracranial aneurysms (IA) benefits from a better understanding of the interplay of IA rupture risk factors. Probabilistic graphical models can capture and graphically display potentially causal relationships in a mechanistic model. In this study, Bayesian networks (BN) were used to estimate IA rupture risk factors influences. From 1248 IA patient records, a retrospective, single-cohort, patient-level data set with 9 phenotypic rupture risk factors (n=790 complete entries) was extracted. Prior knowledge together with score-based structure learning algorithms estimated rupture risk factor interactions. Two approaches, discrete and mixed-data additive BN, were implemented and compared. The corresponding graphs were learned using non-parametric bootstrapping and Markov chain Monte Carlo, respectively. The BN models were compared to standard descriptive and regression analysis methods. Correlation and regression analyses showed significant associations between IA rupture status and patient's sex, familial history of IA, age at IA diagnosis, IA location, IA size and IA multiplicity. BN models confirmed the findings from standard analysis methods. More precisely, they directly associated IA rupture with familial history of IA, IA size and IA location in a discrete framework. Additive model formulation, enabling mixed-data, found that IA rupture was directly influenced by patient age at diagnosis besides additional mutual influences of the risk factors. This study establishes a data-driven methodology for mechanistic disease modelling of IA rupture and shows the potential to direct clinical decision-making in IA treatment, allowing personalised prediction.

摘要

临床医生在决定未破裂颅内动脉瘤(intracranial aneurysms,IA)的治疗方案时,可以从更好地理解 IA 破裂风险因素的相互作用中受益。概率图形模型可以捕捉和图形化显示机制模型中的潜在因果关系。在这项研究中,贝叶斯网络(Bayesian networks,BN)被用于估计 IA 破裂风险因素的影响。从 1248 例 IA 患者记录中,提取了一个回顾性、单队列、患者水平的数据组,其中包含 9 个表型破裂风险因素(n=790 个完整条目)。先验知识与基于评分的结构学习算法一起估计了破裂风险因素的相互作用。实施了两种方法,离散和混合数据加性 BN,并进行了比较。相应的图形分别使用非参数引导和马尔可夫链蒙特卡罗学习。BN 模型与标准描述性和回归分析方法进行了比较。相关性和回归分析显示,IA 破裂状态与患者性别、IA 家族史、IA 诊断时的年龄、IA 位置、IA 大小和 IA 多发性之间存在显著关联。BN 模型证实了标准分析方法的发现。更准确地说,它们在离散框架中将 IA 破裂与 IA 家族史、IA 大小和 IA 位置直接相关联。允许混合数据的加性模型公式发现,IA 破裂除了风险因素之间的额外相互影响外,还直接受到患者诊断时年龄的影响。本研究建立了一种用于 IA 破裂机制疾病建模的基于数据的方法,并显示了在 IA 治疗中直接指导临床决策的潜力,从而实现个体化预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验