College of Medical Informatics, Chongqing Medical University, Chongqing, China.
Medical Data Science Academy, Chongqing Medical University, Chongqing, China.
Ann Med. 2024 Dec;56(1):2423789. doi: 10.1080/07853890.2024.2423789. Epub 2024 Nov 7.
Atrial fibrillation (AF) coexisting with coronary artery disease (CAD) remains a prevailing issue that often results in poor short- and long-term patient outcomes. Screening has been proposed as a method to increase AF detection rates and reduce the incidence of poor prognosis through early intervention. Nevertheless, due to the cost implications and uncertainty over the benefits of a systematic screening programme, the International Task Force currently recommends against screening. This study is to employ Bayesian networks (BN) for assessing the pre-test probability (PTP) of AF in patients with CAD.
A total of 12,552 patients with CAD were divided into the CAD patients with AF group (CHD-AF group) and the CAD patients without AF group (non-AF group). Univariate analysis and LASSO regression method were used to screen for potential risk factors. The maximum-minimum climb (MMHC) algorithm was used to construct the directed acyclic graph (DAG) of BN. Predictive power was tested using internal validation, external validation and 10-fold internal cross-validation. Finally, the generated BN model was compared with four machine learning algorithms.
Fourteen indicators were included in the BN, including age, gender, systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-C), serum uric acid (UA), gamma-glutamyltransferase (GGT), direct bilirubin (DBIL), lipoproteins [LP(a)], NYHA cardiac function grading, diabetes mellitus and hypertension, palpitation, dyspnoea and the left atrial diameter. The BN model performs well on both the test set (AUC = 0.90) and internal 10-fold cross-validation (AUC = 0.89 ± 0.01).
The prediction model of AF with CAD constructed based on BN has high prediction performance and may provide a new tool for large-scale AF screening.
心房颤动(AF)合并冠状动脉疾病(CAD)仍然是一个普遍存在的问题,常常导致患者短期和长期预后不良。筛查被提议作为一种提高 AF 检出率并通过早期干预降低不良预后发生率的方法。然而,由于成本问题以及对系统筛查计划益处的不确定性,国际工作组目前不建议进行筛查。本研究旨在使用贝叶斯网络(BN)评估 CAD 患者中 AF 的术前概率(PTP)。
共纳入 12552 例 CAD 患者,分为 CAD 合并 AF 组(CHD-AF 组)和 CAD 不合并 AF 组(非-AF 组)。采用单因素分析和 LASSO 回归方法筛选潜在危险因素。采用最大-最小爬升(MMHC)算法构建 BN 的有向无环图(DAG)。采用内部验证、外部验证和 10 折内部交叉验证测试预测能力。最后,将生成的 BN 模型与四种机器学习算法进行比较。
BN 纳入 14 项指标,包括年龄、性别、收缩压(SBP)、低密度脂蛋白胆固醇(LDL-C)、血尿酸(UA)、γ-谷氨酰转移酶(GGT)、直接胆红素(DBIL)、脂蛋白[LP(a)]、NYHA 心功能分级、糖尿病和高血压、心悸、呼吸困难和左心房直径。BN 模型在测试集(AUC=0.90)和内部 10 折交叉验证(AUC=0.89±0.01)上表现良好。
基于 BN 构建的 CAD 合并 AF 预测模型具有较高的预测性能,可为大规模 AF 筛查提供新工具。