Suppr超能文献

基于贝叶斯网络的冠心病患者心房颤动的识别和预测:一项多中心回顾性研究。

The identification and prediction of atrial fibrillation in coronary artery disease patients: a multicentre retrospective study based on Bayesian network.

机构信息

College of Medical Informatics, Chongqing Medical University, Chongqing, China.

Medical Data Science Academy, Chongqing Medical University, Chongqing, China.

出版信息

Ann Med. 2024 Dec;56(1):2423789. doi: 10.1080/07853890.2024.2423789. Epub 2024 Nov 7.

Abstract

BACKGROUND

Atrial fibrillation (AF) coexisting with coronary artery disease (CAD) remains a prevailing issue that often results in poor short- and long-term patient outcomes. Screening has been proposed as a method to increase AF detection rates and reduce the incidence of poor prognosis through early intervention. Nevertheless, due to the cost implications and uncertainty over the benefits of a systematic screening programme, the International Task Force currently recommends against screening. This study is to employ Bayesian networks (BN) for assessing the pre-test probability (PTP) of AF in patients with CAD.

METHODS

A total of 12,552 patients with CAD were divided into the CAD patients with AF group (CHD-AF group) and the CAD patients without AF group (non-AF group). Univariate analysis and LASSO regression method were used to screen for potential risk factors. The maximum-minimum climb (MMHC) algorithm was used to construct the directed acyclic graph (DAG) of BN. Predictive power was tested using internal validation, external validation and 10-fold internal cross-validation. Finally, the generated BN model was compared with four machine learning algorithms.

RESULTS

Fourteen indicators were included in the BN, including age, gender, systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-C), serum uric acid (UA), gamma-glutamyltransferase (GGT), direct bilirubin (DBIL), lipoproteins [LP(a)], NYHA cardiac function grading, diabetes mellitus and hypertension, palpitation, dyspnoea and the left atrial diameter. The BN model performs well on both the test set (AUC = 0.90) and internal 10-fold cross-validation (AUC = 0.89 ± 0.01).

CONCLUSION

The prediction model of AF with CAD constructed based on BN has high prediction performance and may provide a new tool for large-scale AF screening.

摘要

背景

心房颤动(AF)合并冠状动脉疾病(CAD)仍然是一个普遍存在的问题,常常导致患者短期和长期预后不良。筛查被提议作为一种提高 AF 检出率并通过早期干预降低不良预后发生率的方法。然而,由于成本问题以及对系统筛查计划益处的不确定性,国际工作组目前不建议进行筛查。本研究旨在使用贝叶斯网络(BN)评估 CAD 患者中 AF 的术前概率(PTP)。

方法

共纳入 12552 例 CAD 患者,分为 CAD 合并 AF 组(CHD-AF 组)和 CAD 不合并 AF 组(非-AF 组)。采用单因素分析和 LASSO 回归方法筛选潜在危险因素。采用最大-最小爬升(MMHC)算法构建 BN 的有向无环图(DAG)。采用内部验证、外部验证和 10 折内部交叉验证测试预测能力。最后,将生成的 BN 模型与四种机器学习算法进行比较。

结果

BN 纳入 14 项指标,包括年龄、性别、收缩压(SBP)、低密度脂蛋白胆固醇(LDL-C)、血尿酸(UA)、γ-谷氨酰转移酶(GGT)、直接胆红素(DBIL)、脂蛋白[LP(a)]、NYHA 心功能分级、糖尿病和高血压、心悸、呼吸困难和左心房直径。BN 模型在测试集(AUC=0.90)和内部 10 折交叉验证(AUC=0.89±0.01)上表现良好。

结论

基于 BN 构建的 CAD 合并 AF 预测模型具有较高的预测性能,可为大规模 AF 筛查提供新工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e1c/11544742/59bdb8cd1021/IANN_A_2423789_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验