Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
Synthetic Biology Group, Earth and Biological Science Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
J Microbiol Methods. 2022 Sep;200:106533. doi: 10.1016/j.mimet.2022.106533. Epub 2022 Jun 30.
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) system is a useful tool to edit genomes quickly and efficiently. However, the use of CRISPR/Cas9 to edit bacterial genomes has been limited to select microbial chassis primarily used for bioproduction of high value products. Thus, expansion of CRISPR/Cas9 tools to other microbial organisms is needed. Here, our aim was to assess the suitability of CRISPR/Cas9 for genome editing of the Citrobacter freundii type strain ATCC 8090. We evaluated the commonly used two plasmid pCas/pTargetF system to enable gene deletions and insertions in C. freundii and determined editing efficiency. The CRISPR/Cas9 based method enabled high editing efficiency (~91%) for deletion of galactokinase (galk) and enabled deletion with various single guide RNA (sgRNA) sequences. To assess the ability of CRISPR/Cas9 tools to insert genes, we used the fluorescent reporter mNeonGreen, an endopeptidase (yebA), and a transcriptional regulator (xylS) and found successful insertion with high efficiency (81-100%) of each gene individually. These results strengthen and expand the use of CRISPR/Cas9 genome editing to C. freundii as an additional microbial chassis.
CRISPR/Cas9(规律成簇间隔短回文重复/CRISPR 相关蛋白)系统是一种快速有效地编辑基因组的有用工具。然而,CRISPR/Cas9 用于编辑细菌基因组的应用主要局限于选择主要用于高价值产品生物生产的微生物底盘。因此,需要将 CRISPR/Cas9 工具扩展到其他微生物中。在这里,我们的目的是评估 CRISPR/Cas9 用于编辑柠檬酸杆菌模式菌株 ATCC 8090 基因组的适用性。我们评估了常用的双质粒 pCas/pTargetF 系统,以实现柠檬酸杆菌中的基因缺失和插入,并确定编辑效率。基于 CRISPR/Cas9 的方法可实现高编辑效率(~91%),用于删除半乳糖激酶(galk),并可使用各种单向导 RNA(sgRNA)序列进行删除。为了评估 CRISPR/Cas9 工具插入基因的能力,我们使用了荧光报告基因 mNeonGreen、内肽酶(yebA)和转录调节剂(xylS),并发现每个基因的插入都具有很高的效率(81-100%)。这些结果加强并扩展了 CRISPR/Cas9 基因组编辑在柠檬酸杆菌中的应用,作为额外的微生物底盘。