Geology Department, School of Natural Sciences, Trinity College, Dublin 2, Ireland.
Department of Planning, Aalborg University Copenhagen, Copenhagen, Denmark.
J Environ Radioact. 2022 Oct;251-252:106956. doi: 10.1016/j.jenvrad.2022.106956. Epub 2022 Jun 30.
Globally, indoor radon exposure is the leading cause of lung cancer in non-smokers and second most common cause after tobacco smoking. Soil-gas radon is the main contributor to indoor radon, but its spatial distribution is highly variable, which poses certain challenges for mapping and predicting radon anomalies. Measurement of indoor radon typically takes place over long periods of time (e.g. 3 months) and is seasonally adjusted to an annual average concentration. In this article we investigate the suitability of using soil-gas radon and soil-permeability measurements for rapid radon risk assessments at local scale. The area of Castleisland, Co. Kerry was chosen as a case study due to availability of indoor radon data and the presence of significant radon anomalies. In total, 135 soil-gas and permeability measurements were collected and complemented with 180 indoor radon measurements for an identical 6 km area. Both soil-gas and indoor radon concentrations ranged from very low (<10 kBqm, 0.1 Bqm) to anomalously high (>1433 kBqm, 65,000 Bqm) values. Our method classifies almost 50% of the area as a high radon potential area, and allows assessment of geogenic controls on radon distribution by including other geological variables. Cumulatively, the percentage of indoor radon variance explained by soil-gas radon concentration, bedrock geology, subsoil permeability and Quaternary geology is 34% (16%, 10%, 4% and 4% respectively). Soil-gas and indoor radon anomalies are associated with black shales, whereas the presence of karst and geological faults are other contributing factors. Sampling of radon soil-gas and soil permeability, used in conjunction with other geogenic data, can therefore facilitate rapid designation of radon priority areas. Such an approach demonstrates the usefulness of high-resolution geogenic maps in predicting indoor radon risk categories when compared to the application of indoor radon measurements alone. This method is particularly useful to assess radon potential in areas where indoor radon measurements are sparse or lacking, with particular application to rural areas, land rezoned for residential use, or for sites prior to building construction.
在全球范围内,室内氡暴露是不吸烟人群肺癌的主要原因,也是仅次于吸烟的第二大常见原因。土壤气氡是室内氡的主要来源,但它的空间分布高度可变,这给氡异常的测绘和预测带来了一定的挑战。室内氡的测量通常需要很长的时间(例如 3 个月),并进行季节性调整以得出年平均浓度。在本文中,我们研究了使用土壤气氡和土壤渗透率测量来快速评估当地尺度的氡风险的适宜性。选择凯里郡的卡斯特尔斯兰作为案例研究区,是因为这里有室内氡数据和显著的氡异常。总共采集了 135 个土壤气和渗透率测量值,并补充了 180 个相同 6 公里区域的室内氡测量值。土壤气和室内氡浓度的范围从非常低(<10 kBqm,0.1 Bqm)到异常高(>1433 kBqm,65000 Bqm)。我们的方法将近 50%的区域划分为高氡潜力区,并通过包括其他地质变量来评估氡分布的地球成因控制。土壤气氡浓度、基岩地质、底土渗透率和第四纪地质对室内氡方差的累积解释率分别为 34%(分别为 16%、10%、4%和 4%)。土壤气和室内氡异常与黑色页岩有关,而喀斯特和地质断层的存在是其他促成因素。因此,结合其他地球成因数据,对氡土壤气和土壤渗透率进行采样,可以方便地快速划定氡优先区域。与单独应用室内氡测量相比,这种方法在预测室内氡风险类别方面展示了高分辨率地球成因图的有用性。该方法特别适用于评估室内氡测量稀疏或缺乏的地区的氡潜力,特别适用于农村地区、重新规划用于住宅用途的土地或建筑物施工前的场地。