Suppr超能文献

受人类脑连接组约束的认知过程深度学习模型。

Deep learning models of cognitive processes constrained by human brain connectomes.

机构信息

Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, China; Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC H3W 1W6, Canada; Department of Psychology, Université de Montréal, Montréal, QC H3C 3J7, Canada.

Department of Mathematical and Electrical Engineering, IMT Atlantique, Brest, France.

出版信息

Med Image Anal. 2022 Aug;80:102507. doi: 10.1016/j.media.2022.102507. Epub 2022 Jun 7.

Abstract

Decoding cognitive processes from recordings of brain activity has been an active topic in neuroscience research for decades. Traditional decoding studies focused on pattern classification in specific regions of interest and averaging brain activity over many trials. Recently, brain decoding with graph neural networks has been shown to scale at fine temporal resolution and on the full brain, achieving state-of-the-art performance on the human connectome project benchmark. The reason behind this success is likely the strong inductive connectome prior that enables the integration of distributed patterns of brain activity. Yet, the nature of such inductive bias is still poorly understood. In this work, we investigate the impact of the inclusion of multiple path lengths (through high-order graph convolution), the homogeneity of brain parcels (graph nodes), and the type of interactions (graph edges). We evaluate the decoding models on a large population of 1200 participants, under 21 different experimental conditions, acquired from the Human Connectome Project database. Our findings reveal that the optimal choice for large-scale cognitive decoding is to propagate neural dynamics within empirical functional connectomes and integrate brain dynamics using high-order graph convolutions. In this setting, the model exhibits high decoding accuracy and robustness against adversarial attacks on the graph architecture, including randomization in functional connectomes and lesions in targeted brain regions and networks. The trained model relies on biologically meaningful features for the prediction of cognitive states and generates task-specific graph representations resembling task-evoked activation maps. These results demonstrate that a full-brain integrative model is critical for the large-scale brain decoding. Our study establishes principles of how to effectively leverage human connectome constraints in deep graph neural networks, providing new avenues to study the neural substrates of human cognition at scale.

摘要

几十年来,从大脑活动记录中解码认知过程一直是神经科学研究的热门话题。传统的解码研究集中在特定感兴趣区域的模式分类和对多次试验的大脑活动进行平均。最近,使用图神经网络进行大脑解码已经被证明可以以精细的时间分辨率和整个大脑的规模进行,在人类连接组计划基准上达到了最先进的性能。这种成功的原因可能是强大的归纳连接组先验,它能够整合大脑活动的分布式模式。然而,这种归纳偏差的性质仍然知之甚少。在这项工作中,我们研究了包含多个路径长度(通过高阶图卷积)、大脑区室的同质性(图节点)和交互类型(图边)的影响。我们在来自人类连接组计划数据库的 1200 名参与者的大量人群中评估了这些解码模型,在 21 种不同的实验条件下进行了评估。我们的研究结果表明,对于大规模认知解码的最佳选择是在经验功能连接组内传播神经动力学,并使用高阶图卷积来整合大脑动力学。在这种设置下,该模型表现出高解码准确性和对图结构的对抗攻击的鲁棒性,包括功能连接组中的随机化和靶向大脑区域和网络中的损伤。训练有素的模型依赖于对认知状态进行预测的生物意义上的特征,并生成类似于任务诱发激活图的特定任务的图表示。这些结果表明,全脑整合模型对于大规模大脑解码至关重要。我们的研究确立了如何在深度图神经网络中有效地利用人类连接组约束的原则,为大规模研究人类认知的神经基质提供了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验