Suppr超能文献

健康移民效应?利用机器学习估计美国无证移民人口的健康结果。

A healthy migrant effect? Estimating health outcomes of the undocumented immigrant population in the United States using machine learning.

机构信息

Berliner Institut für Empirische Integrations- und Migrationsforschung/BIM, Berlin, Germany.

University of Utah, Department of Sociology, Salt Lake City, UT, USA.

出版信息

Soc Sci Med. 2022 Aug;307:115177. doi: 10.1016/j.socscimed.2022.115177. Epub 2022 Jun 30.

Abstract

This paper investigated whether the commonly observed immigrant health advantage persists among undocumented immigrants in the U.S. and provides nationally representative evidence on the health of this vulnerable population. Data were derived from pooled cross-sections of the National Health Interview Survey (NHIS, 2000-2018). The legal status of foreign-born NHIS respondents is imputed using a non-parametric machine learning model built based on information from the 2004, 2008 and 2014 cohorts of the Survey of Income and Program Participation (SIPP). Multivariate logistic regression analysis indicated that, despite exposure to numerous additional risk factors, the undocumented population experienced a more pronounced Healthy Migrant Effect, with lower odds of reporting fair or poor self-rated health, any physician-diagnosed chronic conditions or being obese. The observed patterns in undocumented health outcomes may be related to the additional challenges and exclusionary policies associated with undocumented migration that could in turn lead to a more pronounced selection of healthy and resilient individuals.

摘要

本文探讨了在美国无证移民中是否存在普遍观察到的移民健康优势,并为这一脆弱人群的健康状况提供了全国代表性证据。数据来自国家健康访谈调查(NHIS,2000-2018 年)的多个横截面。利用基于 2004 年、2008 年和 2014 年参与收入和计划调查(SIPP)队列信息构建的非参数机器学习模型,对出生在国外的 NHIS 受访者的法律地位进行了推断。多变量逻辑回归分析表明,尽管面临许多额外的风险因素,无证移民群体仍表现出更明显的健康移民效应,自述健康状况不佳或较差、任何医生诊断的慢性疾病或肥胖的可能性较低。无证移民健康结果中观察到的模式可能与无证移民相关的额外挑战和排斥性政策有关,这反过来可能导致更明显地选择健康和有韧性的个体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验