Guedj Mickaël, Swindle Jack, Hamon Antoine, Hubert Sandra, Desvaux Emiko, Laplume Jessica, Xuereb Laura, Lefebvre Céline, Haudry Yannick, Gabarroca Christine, Aussy Audrey, Laigle Laurence, Dupin-Roger Isabelle, Moingeon Philippe
Servier, Research & Development, Suresnes, France.
Lincoln, Research & Development, Boulogne-Billancourt, France.
Expert Opin Drug Discov. 2022 Aug;17(8):815-824. doi: 10.1080/17460441.2022.2095368. Epub 2022 Jul 10.
As a mid-size international pharmaceutical company, we initiated 4 years ago the launch of a dedicated high-throughput computing platform supporting drug discovery. The platform named ' was built up on the initial predicate to capitalize on our proprietary data while leveraging public data sources in order to foster a Computational Precision Medicine approach with the power of artificial intelligence.
Specifically, is designed to identify novel therapeutic target candidates. With several successful use cases in immuno-inflammatory diseases, and current ongoing extension to applications to oncology and neurology, we document how this industrial computational platform has had a transformational impact on our R&D, making it more competitive, as well time and cost effective through a model-based educated selection of therapeutic targets and drug candidates.
We report our achievements, but also our challenges in implementing data access and governance processes, building up hardware and user interfaces, and acculturing scientists to use predictive models to inform decisions.
作为一家中型国际制药公司,我们于4年前启动了一个专门的高通量计算平台,以支持药物研发。这个名为“ ”的平台建立在最初的设想之上,即利用我们的专有数据,同时借助公共数据源,以借助人工智能的力量推动计算精准医学方法。
具体而言, 旨在识别新的治疗靶点候选物。在免疫炎症性疾病方面有多个成功案例,目前正在向肿瘤学和神经学应用扩展,我们记录了这个工业计算平台如何对我们的研发产生变革性影响,使其更具竞争力,同时通过基于模型的明智选择治疗靶点和候选药物,提高了时间和成本效益。
我们报告了我们的成就,也报告了在实施数据访问和治理流程、构建硬件和用户界面以及培养科学家使用预测模型来为决策提供信息方面所面临的挑战。