Mangelinck Adèle, Molitor Elodie, Marchiq Ibtissam, Alaoui Lamine, Bouaziz Matthieu, Andrade-Pereira Renan, Darville Hélène, Becht Etienne, Lefebvre Céline
Servier, Research & Development, Gif-sur-Yvette, France.
Lincoln, Research & Development, Boulogne-Billancourt, France.
PLoS One. 2024 Dec 27;19(12):e0315980. doi: 10.1371/journal.pone.0315980. eCollection 2024.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets. Here, we generated Tumor-Infiltrating regulatory T cells (TI-Tregs) and exhausted T cells (Tex) gene signatures from a single cell RNA-seq pan-cancer T cell atlas. To overcome noise and sparsity inherent to single cell transcriptomics, we then propagated the gene signatures by diffusion in a protein-protein interaction network using the Patrimony high-throughput computing platform. This methodology enabled the refining of signatures by rescoring genes based on their biological connectivity and shed light not only on processes characteristics of TI-Treg and Tex development and functions but also on their immunometabolic specificities. The combined use of single cell transcriptomics and network propagation may thus represent an innovative and effective methodology for the characterization of cell populations of interest and eventually the development of new therapeutic strategies in immuno-oncology.
提高药物的选择性和有效性是免疫肿瘤学未来治疗发展的关键问题。在这种情况下,传统的整体转录组学在靶点发现的早期阶段面临局限性,因为所得基因表达水平代表多个细胞群体的平均测量值。相比之下,单细胞RNA测序可以深入研究独特细胞群体的转录组,有助于识别特定靶点。在这里,我们从单细胞RNA测序泛癌T细胞图谱中生成了肿瘤浸润调节性T细胞(TI-Tregs)和耗竭性T细胞(Tex)的基因特征。为了克服单细胞转录组学固有的噪声和稀疏性,我们随后使用遗产高通量计算平台在蛋白质-蛋白质相互作用网络中通过扩散传播基因特征。这种方法能够通过基于基因的生物连通性重新评分来优化特征,不仅揭示了TI-Treg和Tex发育及功能的过程特征,还揭示了它们的免疫代谢特异性。因此,单细胞转录组学和网络传播的联合使用可能代表一种创新且有效的方法,用于表征感兴趣的细胞群体,并最终在免疫肿瘤学中开发新的治疗策略。