Program in Biophysics, University of Michigan, Ann Arbor, Michigan; Program in Applied Physics, University of Michigan, Ann Arbor, Michigan.
Program in Biophysics, University of Michigan, Ann Arbor, Michigan.
Biophys J. 2022 Aug 2;121(15):2906-2920. doi: 10.1016/j.bpj.2022.06.036. Epub 2022 Jul 4.
Single-molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM data set is an essential aspect of the image processing and analysis pipeline. Here, we present a simple method to estimate the localization spread function (LSF) of a static SMLM data set directly from acquired localizations, exploiting the correlated dynamics of individual emitters and properties of the pair autocorrelation function evaluated in both time and space. The method is demonstrated on simulated localizations, DNA origami rulers, and cellular structures labeled by dye-conjugated antibodies, DNA-PAINT, or fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are broader than expected from the localization precision alone, due to additional uncertainty accrued when localizing molecules imaged over time.
单分子定位显微镜(SMLM)可以使细胞结构的可视化分辨率达到可见光衍射极限的一个数量级,对 SMLM 数据集的分辨率进行准确、客观的评估是图像处理和分析管道的一个重要方面。在这里,我们提出了一种简单的方法,可以直接从获取的定位中估计静态 SMLM 数据集的定位扩展函数(LSF),利用单个发射器的相关动力学和在时间和空间上评估的对自相关函数的性质。该方法在模拟定位、DNA 折纸尺以及通过染料偶联抗体、DNA-PAINT 或荧光融合蛋白标记的细胞结构上进行了验证。我们表明,由于在时间上对成像分子进行定位时会累积额外的不确定性,因此实验获得的图像的 LSF 比仅从定位精度预期的要宽。