Suppr超能文献

基于三维多视图挤压激励卷积神经网络的肺结节良恶性分类研究

[Research on classification of benign and malignant lung nodules based on three-dimensional multi-view squeeze-and-excitation convolutional neural network].

作者信息

Yang Yang, Li Xiaoqin, Han Zhenbo, Fu Jipeng, Gao Bin

机构信息

Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):452-461. doi: 10.7507/1001-5515.202110059.

Abstract

Lung cancer is the most threatening tumor disease to human health. Early detection is crucial to improve the survival rate and recovery rate of lung cancer patients. Existing methods use the two-dimensional multi-view framework to learn lung nodules features and simply integrate multi-view features to achieve the classification of benign and malignant lung nodules. However, these methods suffer from the problems of not capturing the spatial features effectively and ignoring the variability of multi-views. Therefore, this paper proposes a three-dimensional (3D) multi-view convolutional neural network (MVCNN) framework. To further solve the problem of different views in the multi-view model, a 3D multi-view squeeze-and-excitation convolution neural network (MVSECNN) model is constructed by introducing the squeeze-and-excitation (SE) module in the feature fusion stage. Finally, statistical methods are used to analyze model predictions and doctor annotations. In the independent test set, the classification accuracy and sensitivity of the model were 96.04% and 98.59% respectively, which were higher than other state-of-the-art methods. The consistency score between the predictions of the model and the pathological diagnosis results was 0.948, which is significantly higher than that between the doctor annotations and the pathological diagnosis results. The methods presented in this paper can effectively learn the spatial heterogeneity of lung nodules and solve the problem of multi-view differences. At the same time, the classification of benign and malignant lung nodules can be achieved, which is of great significance for assisting doctors in clinical diagnosis.

摘要

肺癌是对人类健康最具威胁的肿瘤疾病。早期检测对于提高肺癌患者的生存率和康复率至关重要。现有方法使用二维多视图框架来学习肺结节特征,并简单地整合多视图特征以实现良性和恶性肺结节的分类。然而,这些方法存在无法有效捕捉空间特征以及忽略多视图变异性的问题。因此,本文提出了一种三维(3D)多视图卷积神经网络(MVCNN)框架。为了进一步解决多视图模型中不同视图的问题,通过在特征融合阶段引入挤压与激励(SE)模块构建了三维多视图挤压与激励卷积神经网络(MVSECNN)模型。最后,使用统计方法分析模型预测结果和医生标注。在独立测试集中,该模型的分类准确率和灵敏度分别为96.04%和98.59%,高于其他现有最先进方法。模型预测结果与病理诊断结果之间的一致性分数为0.948,显著高于医生标注与病理诊断结果之间的一致性分数。本文提出的方法能够有效学习肺结节的空间异质性并解决多视图差异问题。同时,可以实现良性和恶性肺结节的分类,这对于辅助医生进行临床诊断具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验