School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
Int J Comput Assist Radiol Surg. 2019 Nov;14(11):1969-1979. doi: 10.1007/s11548-019-01979-1. Epub 2019 Apr 26.
Pulmonary nodule detection has great significance for early treating lung cancer and increasing patient survival. This work presents a novel automated computer-aided detection scheme for pulmonary nodules based on deep convolutional neural networks (DCNNs).
The proposed approach employs 3D DCNNs based on squeeze-and-excitation network and residual network (SE-ResNet) for pulmonary nodule candidate detection and false-positive reduction. Specifically, a 3D region proposal network with a U-Net-like structure is designed for detecting pulmonary nodule candidates. For the subsequent false-positive reduction, a 3D SE-ResNet-based classifier is presented to accurately discriminate the true nodules from candidates. The 3D SE-ResNet modules boost the representational power of the network by adaptively recalibrating channel-wise residual feature responses. Both models utilize 3D SE-ResNet modules to learn nodule features effectively and improve nodule detection performance.
On the public available lung nodule analysis 2016 dataset with 888 scans included, the proposed method reaches high detection sensitivities of 93.6% and 95.7% at one and four false positives per scan, respectively. Meanwhile, the competition performance metric score of 0.904 is achieved. The proposed method has the capability to detect multi-size nodules, especially the extremely small nodules.
In this paper, a 3D DCNNs framework based on 3D SE-ResNet modules is proposed to detect pulmonary nodules in chest CT images accurately. Experimental results demonstrate superior effectiveness of the proposed approach in pulmonary nodule detection task.
肺部结节检测对早期治疗肺癌和提高患者生存率具有重要意义。本研究提出了一种基于深度卷积神经网络(DCNN)的新型自动计算机辅助肺结节检测方案。
所提出的方法采用基于挤压激励网络和残差网络(SE-ResNet)的 3D DCNN 进行肺结节候选检测和假阳性减少。具体来说,设计了一种具有 U-Net 结构的 3D 区域提议网络,用于检测肺结节候选。为了进行后续的假阳性减少,提出了一种基于 3D SE-ResNet 的分类器,用于准确区分候选中的真实结节。3D SE-ResNet 模块通过自适应重新校准通道间残差特征响应来增强网络的表示能力。两个模型都利用 3D SE-ResNet 模块来有效地学习结节特征,提高结节检测性能。
在包含 888 个扫描的公共可用的肺结节分析 2016 数据集上,所提出的方法在每个扫描一个和四个假阳性的情况下分别达到了 93.6%和 95.7%的高检测灵敏度。同时,还实现了 0.904 的竞争性能指标分数。该方法具有检测多尺寸结节的能力,特别是非常小的结节。
本文提出了一种基于 3D SE-ResNet 模块的 3D DCNN 框架,用于准确检测胸部 CT 图像中的肺结节。实验结果表明,该方法在肺结节检测任务中具有优越的效果。