Suppr超能文献

结构变异影响儿童高级别胶质瘤的驱动基因组合和预后。

Structural variants shape driver combinations and outcomes in pediatric high-grade glioma.

机构信息

Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Cancer. 2022 Aug;3(8):994-1011. doi: 10.1038/s43018-022-00403-z. Epub 2022 Jul 4.

Abstract

We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3 DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.

摘要

我们分析了 179 例儿童高级别胶质瘤 (pHGG) 中结构变异 (SV) 对胶质瘤发生的贡献。最常见的 SV 靶向 MYC 异构体和受体酪氨酸激酶 (RTKs),包括在 12%弥漫性中线胶质瘤 (DMG) 中扩增 MYC 增强子的 SV,表明 MYC 在 pHGG 中具有被低估的作用。SV 特征分析显示,具有简单特征的肿瘤为 TP53 野生型 (TP53),但在 TP53 通路成员 PPM1D 和 MDM4 中存在改变。复杂特征与 TP53、CDKN2A 和 RB1 的直接异常有关,这些异常发生在肿瘤进化的早期,与后来发生的染色体外扩增子有关。所有 pHGG 至少表现出一种简单-SV 特征,但复杂-SV 特征主要局限于 H3.3 DMG 和半球形 pHGG 亚组。重要的是,具有复杂-SV 特征的 DMG 与较短的总生存期相关,与组蛋白突变和 TP53 状态无关。这些数据提供了对 SV 对胶质瘤发生的影响以及形成它们的机制的深入了解。

相似文献

1
Structural variants shape driver combinations and outcomes in pediatric high-grade glioma.
Nat Cancer. 2022 Aug;3(8):994-1011. doi: 10.1038/s43018-022-00403-z. Epub 2022 Jul 4.
3
Adult diffuse midline gliomas: Clinical, radiological, and genetic characteristics.
J Clin Neurosci. 2020 Dec;82(Pt A):1-8. doi: 10.1016/j.jocn.2020.10.005. Epub 2020 Nov 1.
7
Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas.
Acta Neuropathol Commun. 2017 Oct 30;5(1):78. doi: 10.1186/s40478-017-0479-8.
10
Genomic profiling and prognostic factors of H3 K27M-mutant spinal cord diffuse glioma.
Brain Pathol. 2023 Jul;33(4):e13153. doi: 10.1111/bpa.13153. Epub 2023 Feb 7.

引用本文的文献

1
Extrachromosomal DNA associates with poor survival across a broad spectrum of childhood solid tumors.
medRxiv. 2025 Aug 7:2025.07.22.24308163. doi: 10.1101/2025.07.22.24308163.
2
Epigenetic modifications and their roles in pediatric brain tumor formation: emerging insights from chromatin dysregulation.
Front Oncol. 2025 Jun 17;15:1569548. doi: 10.3389/fonc.2025.1569548. eCollection 2025.
3
Amplified dosage of the NKX2-1 lineage transcription factor controls its oncogenic role in lung adenocarcinoma.
Mol Cell. 2025 Apr 3;85(7):1311-1329.e16. doi: 10.1016/j.molcel.2025.03.001. Epub 2025 Mar 25.
4
Effective targeting of PDGFRA-altered high-grade glioma with avapritinib.
Cancer Cell. 2025 Apr 14;43(4):740-756.e8. doi: 10.1016/j.ccell.2025.02.018. Epub 2025 Mar 13.
5
A sequence context-based approach for classifying tumor structural variants without paired normal samples.
Cell Rep Methods. 2025 Mar 24;5(3):100991. doi: 10.1016/j.crmeth.2025.100991. Epub 2025 Mar 12.
8
Aberrant DNA repair reveals a vulnerability in histone H3.3-mutant brain tumors.
Nucleic Acids Res. 2024 Mar 21;52(5):2372-2388. doi: 10.1093/nar/gkad1257.
10
SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors.
Nat Commun. 2023 Dec 1;14(1):7762. doi: 10.1038/s41467-023-43498-3.

本文引用的文献

1
Author Correction: Analyses of non-coding somatic drivers in 2,658 cancer whole genomes.
Nature. 2023 Feb;614(7948):E40. doi: 10.1038/s41586-022-05599-9.
2
Chromothripsis drives the evolution of gene amplification in cancer.
Nature. 2021 Mar;591(7848):137-141. doi: 10.1038/s41586-020-03064-z. Epub 2020 Dec 23.
3
Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis.
Cell. 2020 Dec 10;183(6):1617-1633.e22. doi: 10.1016/j.cell.2020.11.012. Epub 2020 Nov 30.
4
Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma.
Nat Commun. 2020 Nov 16;11(1):5823. doi: 10.1038/s41467-020-19452-y.
5
Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
Cell. 2020 Oct 1;183(1):197-210.e32. doi: 10.1016/j.cell.2020.08.006.
6
Subclonal reconstruction of tumors by using machine learning and population genetics.
Nat Genet. 2020 Sep;52(9):898-907. doi: 10.1038/s41588-020-0675-5. Epub 2020 Sep 2.
7
Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers.
Nat Genet. 2020 Sep;52(9):891-897. doi: 10.1038/s41588-020-0678-2. Epub 2020 Aug 17.
8
A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies.
Nat Cancer. 2020 Feb;1(2):249-263. doi: 10.1038/s43018-020-0027-5. Epub 2020 Feb 17.
9
Comparative Molecular Life History of Spontaneous Canine and Human Gliomas.
Cancer Cell. 2020 Feb 10;37(2):243-257.e7. doi: 10.1016/j.ccell.2020.01.004.
10
The repertoire of mutational signatures in human cancer.
Nature. 2020 Feb;578(7793):94-101. doi: 10.1038/s41586-020-1943-3. Epub 2020 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验