Suppr超能文献

在缺陷型氮化硼碳中构建受阻路易斯酸碱对用于电催化氮还原制氨

Creating Frustrated Lewis Pairs in Defective Boron Carbon Nitride for Electrocatalytic Nitrogen Reduction to Ammonia.

作者信息

Lin Wenwen, Chen Hao, Lin Gaobo, Yao Siyu, Zhang Zihao, Qi Jizhen, Jing Meizan, Song Weiyu, Li Jing, Liu Xi, Fu Jie, Dai Sheng

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China.

出版信息

Angew Chem Int Ed Engl. 2022 Sep 5;61(36):e202207807. doi: 10.1002/anie.202207807. Epub 2022 Jul 26.

Abstract

The electrocatalytic nitrogen reduction reaction (NRR) on metal-free catalysts is an attractive alternative to the industrial Haber-Bosch process. However, the state-of-the-art metal-free electrocatalysts still suffer from low Faraday efficiencies and low ammonia yields. Herein, we present a molecular design strategy to develop a defective boron carbon nitride (BCN) catalyst with the abundant unsaturated B and N atoms as Lewis acid and base sites, which upgrades the catalyst from a single "Lewis acid catalysis" to "frustrated Lewis pairs (FLPs) catalysis." N / N exchange experiments and density functional theory (DFT) calculations reveal that FLPs can adsorb an N molecule to form a six-membered ring intermediate, which enables the cleavage of N via a pull-pull effect, thereby significantly reducing the energy barrier to -0.28 eV. Impressively, BCN achieves a high Faraday efficiency of 18.9 %, an ammonia yield of 20.9 μg h  mg , and long-term durability.

摘要

无金属催化剂上的电催化氮还原反应(NRR)是工业哈伯-博施法的一种有吸引力的替代方法。然而,目前最先进的无金属电催化剂仍然存在法拉第效率低和氨产率低的问题。在此,我们提出一种分子设计策略,以开发一种具有丰富不饱和硼和氮原子作为路易斯酸和碱位点的缺陷型硼碳氮化物(BCN)催化剂,这将催化剂从单一的“路易斯酸催化”提升为“受阻路易斯对(FLP)催化”。N/N交换实验和密度泛函理论(DFT)计算表明,FLP可以吸附一个N分子形成一个六元环中间体,通过推拉效应实现N的裂解,从而将能垒显著降低至-0.28 eV。令人印象深刻的是,BCN实现了18.9%的高法拉第效率、20.9 μg h mg的氨产率以及长期耐久性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验