Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France.
Institut Pasteur, Université de Paris Cité, Image Analysis Hub,Paris, France.
PLoS Comput Biol. 2022 Jul 5;18(7):e1010211. doi: 10.1371/journal.pcbi.1010211. eCollection 2022 Jul.
Tridimensional microscopy and algorithms for automated segmentation and tracing are revolutionizing neuroscience through the generation of growing libraries of neuron reconstructions. Innovative computational methods are needed to analyze these neuronal traces. In particular, means to characterize the geometric properties of traced neurites along their trajectory have been lacking. Here, we propose a local tridimensional (3D) scale metric derived from differential geometry, measuring for each point of a curve the characteristic length where it is fully 3D as opposed to being embedded in a 2D plane or 1D line. The larger this metric is and the more complex the local 3D loops and turns of the curve are. Available through the GeNePy3D open-source Python quantitative geometry library (https://genepy3d.gitlab.io), this approach termed nAdder offers new means of describing and comparing axonal and dendritic arbors. We validate this metric on simulated and real traces. By reanalysing a published zebrafish larva whole brain dataset, we show its ability to characterize different population of commissural axons, distinguish afferent connections to a target region and differentiate portions of axons and dendrites according to their behavior, shedding new light on the stereotypical nature of neurites' local geometry.
三维显微镜和自动分割与跟踪算法通过生成不断增长的神经元重建库,正在彻底改变神经科学。需要创新的计算方法来分析这些神经元轨迹。特别是,缺乏用于沿轨迹描述跟踪神经突的几何性质的方法。在这里,我们提出了一种基于微分几何的局部三维(3D)尺度度量,该度量针对曲线的每个点测量其完全处于 3D 状态而不是嵌入在 2D 平面或 1D 线中的特征长度。该度量越大,曲线的局部 3D 环和转弯越复杂。通过使用开源 Python 定量几何库 GeNePy3D(https://genepy3d.gitlab.io)可以获得此方法,称为 nAdder,它提供了描述和比较轴突和树突分支的新方法。我们在模拟和真实轨迹上验证了该度量。通过重新分析已发表的斑马鱼幼虫全脑数据集,我们证明了它能够表征不同的连合轴突群体,区分目标区域的传入连接,并根据其行为区分轴突和树突的部分,这为神经突局部几何形状的典型性质提供了新的认识。