Rundle Andrew G, Bader Michael D M, Mooney Stephen J
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY USA.
Department of Sociology, Johns Hopkins University, Baltimore, MD USA.
Curr Epidemiol Rep. 2022;9(3):175-182. doi: 10.1007/s40471-022-00296-7. Epub 2022 Jun 30.
Innovations in information technology, initiatives by local governments to share administrative data, and growing inventories of data available from commercial data aggregators have immensely expanded the information available to describe neighborhood environments, supporting an approach to research we call Urban Health Informatics. This review evaluates the application of machine learning to this new wealth of data for studies of the effects of neighborhood environments on health.
Prominent machine learning applications in this field include automated image analysis of archived imagery such as Google Street View images, variable selection methods to identify neighborhood environment factors that predict health outcomes from large pools of exposure variables, and spatial interpolation methods to estimate neighborhood conditions across large geographic areas.
In each domain, we highlight successes and cautions in the application of machine learning, particularly highlighting legal issues in applying machine learning approaches to Google's geo-spatial data.
信息技术的创新、地方政府共享行政数据的举措以及商业数据聚合商提供的可用数据库存不断增加,极大地扩展了用于描述邻里环境的信息,支持了一种我们称之为城市健康信息学的研究方法。本综述评估了机器学习在这些新的丰富数据中的应用,以研究邻里环境对健康的影响。
该领域突出的机器学习应用包括对存档图像(如谷歌街景图像)进行自动图像分析、从大量暴露变量中识别预测健康结果的邻里环境因素的变量选择方法,以及估计大地理区域邻里状况的空间插值方法。
在每个领域,我们都强调了机器学习应用中的成功之处和注意事项,尤其突出了将机器学习方法应用于谷歌地理空间数据时的法律问题。