Department of Cardiology, Texas Heart Institute, Houston.
Data Science, American Heart Association, Dallas, Texas.
JAMA Cardiol. 2022 Aug 1;7(8):844-854. doi: 10.1001/jamacardio.2022.1900.
Traditional models for predicting in-hospital mortality for patients with heart failure (HF) have used logistic regression and do not account for social determinants of health (SDOH).
To develop and validate novel machine learning (ML) models for HF mortality that incorporate SDOH.
DESIGN, SETTING, AND PARTICIPANTS: This retrospective study used the data from the Get With The Guidelines-Heart Failure (GWTG-HF) registry to identify HF hospitalizations between January 1, 2010, and December 31, 2020. The study included patients with acute decompensated HF who were hospitalized at the GWTG-HF participating centers during the study period. Data analysis was performed January 6, 2021, to April 26, 2022. External validation was performed in the hospitalization cohort from the Atherosclerosis Risk in Communities (ARIC) study between 2005 and 2014.
Random forest-based ML approaches were used to develop race-specific and race-agnostic models for predicting in-hospital mortality. Performance was assessed using C index (discrimination), regression slopes for observed vs predicted mortality rates (calibration), and decision curves for prognostic utility.
The training data set included 123 634 hospitalized patients with HF who were enrolled in the GWTG-HF registry (mean [SD] age, 71 [13] years; 58 356 [47.2%] female individuals; 65 278 [52.8%] male individuals. Patients were analyzed in 2 categories: Black (23 453 [19.0%]) and non-Black (2121 [2.1%] Asian; 91 154 [91.0%] White, and 6906 [6.9%] other race and ethnicity). The ML models demonstrated excellent performance in the internal testing subset (n = 82 420) (C statistic, 0.81 for Black patients and 0.82 for non-Black patients) and in the real-world-like cohort with less than 50% missingness on covariates (n = 553 506; C statistic, 0.74 for Black patients and 0.75 for non-Black patients). In the external validation cohort (ARIC registry; n = 1205 Black patients and 2264 non-Black patients), ML models demonstrated high discrimination and adequate calibration (C statistic, 0.79 and 0.80, respectively). Furthermore, the performance of the ML models was superior to the traditional GWTG-HF risk score model (C index, 0.69 for both race groups) and other rederived logistic regression models using race as a covariate. The performance of the ML models was identical using the race-specific and race-agnostic approaches in the GWTG-HF and external validation cohorts. In the GWTG-HF cohort, the addition of zip code-level SDOH parameters to the ML model with clinical covariates only was associated with better discrimination, prognostic utility (assessed using decision curves), and model reclassification metrics in Black patients (net reclassification improvement, 0.22 [95% CI, 0.14-0.30]; P < .001) but not in non-Black patients.
ML models for HF mortality demonstrated superior performance to the traditional and rederived logistic regressions models using race as a covariate. The addition of SDOH parameters improved the prognostic utility of prediction models in Black patients but not non-Black patients in the GWTG-HF registry.
用于预测心力衰竭 (HF) 患者住院死亡率的传统模型使用了逻辑回归,并未考虑健康的社会决定因素 (SDOH)。
开发和验证用于 HF 死亡率的新型机器学习 (ML) 模型,该模型包含 SDOH。
设计、地点和参与者:本回顾性研究使用了 Get With The Guidelines-Heart Failure (GWTG-HF) 注册中心的数据,以确定 2010 年 1 月 1 日至 2020 年 12 月 31 日期间的 HF 住院患者。该研究纳入了在研究期间 GWTG-HF 参与中心住院的急性失代偿性 HF 患者。数据分析于 2021 年 1 月 6 日至 2022 年 4 月 26 日进行。外部验证在 2005 年至 2014 年期间进行的社区动脉粥样硬化风险研究 (ARIC) 住院患者队列中进行。
使用基于随机森林的 ML 方法为预测住院死亡率开发了种族特异性和非种族模型。使用 C 指数(区分度)、观察到的死亡率与预测死亡率的回归斜率(校准)和决策曲线评估预后效用来评估性能。
训练数据集包括 123634 名住院 HF 患者,他们参加了 GWTG-HF 注册中心(平均[SD]年龄 71[13]岁;58356[47.2%]女性;65278[52.8%]男性)。患者分为以下两类:黑人(23453[19.0%])和非黑人(2121[2.1%]亚洲人;91154[91.0%]白人,6906[6.9%]其他种族和民族)。ML 模型在内部测试子集(n=82420)中表现出出色的性能(黑人患者的 C 统计量为 0.81,非黑人患者为 0.82),在真实世界相似的队列中,协变量的缺失率低于 50%(n=553506))(黑人患者的 C 统计量为 0.74,非黑人患者为 0.75)。在外部验证队列(ARIC 登记处;n=1205 名黑人患者和 2264 名非黑人患者)中,ML 模型表现出高区分度和适当的校准(C 统计量分别为 0.79 和 0.80)。此外,ML 模型的性能优于传统的 GWTG-HF 风险评分模型(C 指数,两个种族组均为 0.69)和使用种族作为协变量的其他衍生逻辑回归模型。在 GWTG-HF 和外部验证队列中,使用种族特异性和非种族方法的 ML 模型的性能相同。在 GWTG-HF 队列中,仅在临床协变量的 ML 模型中添加邮政编码级别的 SDOH 参数与黑人患者更好的区分度、预后效用(使用决策曲线评估)和模型再分类指标相关(净再分类改善,0.22 [95%CI,0.14-0.30];P<0.001),但在非黑人患者中没有。
HF 死亡率的 ML 模型的性能优于传统和衍生的使用种族作为协变量的逻辑回归模型。在 GWTG-HF 登记处,SDOH 参数的添加提高了黑人患者而不是非黑人患者预测模型的预后效用。