Suppr超能文献

比较家庭医疗保健中社会风险因素对不同种族和族裔群体机器学习模型性能的影响。

Comparing the influence of social risk factors on machine learning model performance across racial and ethnic groups in home healthcare.

作者信息

Hobensack Mollie, Davoudi Anahita, Song Jiyoun, Cato Kenrick, Bowles Kathryn H, Topaz Maxim

机构信息

Icahn School of Medicine at Mount Sinai, New York, NY.

Center for Home Care Policy & Research, VNS Health, New York, NY.

出版信息

Nurs Outlook. 2025 May-Jun;73(3):102431. doi: 10.1016/j.outlook.2025.102431. Epub 2025 May 7.

Abstract

This study examined the impact of social risk factors on machine learning model performance for predicting hospitalization and emergency department visits in home healthcare. Using retrospective data from one U.S. home healthcare agency, four models were developed with unstructured social information documented in clinical notes. Performance was compared with and without social factors. A subgroup analyses was conducted by race and ethnicity to assess for fairness. LightGBM performed best overall. Social factors had a modest effect, but findings highlight the feasibility of integrating unstructured social information into machine learning models and the importance of fairness evaluation in home healthcare.

摘要

本研究考察了社会风险因素对用于预测家庭医疗保健中住院和急诊就诊情况的机器学习模型性能的影响。利用来自一家美国家庭医疗保健机构的回顾性数据,开发了四个包含临床记录中记录的非结构化社会信息的模型。比较了纳入和不纳入社会因素时的模型性能。按种族和民族进行了亚组分析以评估公平性。LightGBM总体表现最佳。社会因素有一定影响,但研究结果凸显了将非结构化社会信息整合到机器学习模型中的可行性以及家庭医疗保健中公平性评估的重要性。

相似文献

5
Racial Inequities and Access to COVID-19 Treatment.种族不平等与获得新冠病毒治疗的机会
JAMA Netw Open. 2025 Jul 1;8(7):e2518459. doi: 10.1001/jamanetworkopen.2025.18459.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验