Suppr超能文献

基于机器学习的种族特异性模型预测 10 年心力衰竭风险的开发和验证:多队列分析。

Development and Validation of Machine Learning-Based Race-Specific Models to Predict 10-Year Risk of Heart Failure: A Multicohort Analysis.

机构信息

Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (M.W.S., K.V.P., A.C., C.A., S.R., J.A.d.L., A.P.).

Parkland Health and Hospital System, Dallas, TX (M.W.S., S.R.).

出版信息

Circulation. 2021 Jun 15;143(24):2370-2383. doi: 10.1161/CIRCULATIONAHA.120.053134. Epub 2021 Apr 13.

Abstract

BACKGROUND

Heart failure (HF) risk and the underlying risk factors vary by race. Traditional models for HF risk prediction treat race as a covariate in risk prediction and do not account for significant parameters such as cardiac biomarkers. Machine learning (ML) may offer advantages over traditional modeling techniques to develop race-specific HF risk prediction models and to elucidate important contributors of HF development across races.

METHODS

We performed a retrospective analysis of 4 large, community cohort studies (ARIC [Atherosclerosis Risk in Communities], DHS [Dallas Heart Study], JHS [Jackson Heart Study], and MESA [Multi-Ethnic Study of Atherosclerosis]) with adjudicated HF events. The study included participants who were >40 years of age and free of HF at baseline. Race-specific ML models for HF risk prediction were developed in the JHS cohort (for Black race-specific model) and White adults from ARIC (for White race-specific model). The models included 39 candidate variables across demographic, anthropometric, medical history, laboratory, and electrocardiographic domains. The ML models were externally validated and compared with prior established traditional and non-race-specific ML models in race-specific subgroups of the pooled MESA/DHS cohort and Black participants of ARIC. The Harrell C-index and Greenwood-Nam-D'Agostino χ tests were used to assess discrimination and calibration, respectively.

RESULTS

The ML models had excellent discrimination in the derivation cohorts for Black (n=4141 in JHS, C-index=0.88) and White (n=7858 in ARIC, C-index=0.89) participants. In the external validation cohorts, the race-specific ML model demonstrated adequate calibration and superior discrimination (Black individuals, C-index=0.80-0.83; White individuals, C-index=0.82) compared with established HF risk models or with non-race-specific ML models derived with race included as a covariate. Among the risk factors, natriuretic peptide levels were the most important predictor of HF risk across both races, followed by troponin levels in Black and ECG-based Cornell voltage in White individuals. Other key predictors of HF risk among Black individuals were glycemic parameters and socioeconomic factors. In contrast, prevalent cardiovascular disease and traditional cardiovascular risk factors were stronger predictors of HF risk in White adults.

CONCLUSIONS

Race-specific and ML-based HF risk models that integrate clinical, laboratory, and biomarker data demonstrated superior performance compared with traditional HF risk and non-race-specific ML models. This approach identifies distinct race-specific contributors of HF.

摘要

背景

心力衰竭(HF)风险和潜在风险因素因种族而异。传统的 HF 风险预测模型将种族视为风险预测的协变量,并未考虑心脏生物标志物等重要参数。机器学习(ML)可能比传统建模技术具有优势,可以开发特定于种族的 HF 风险预测模型,并阐明跨种族 HF 发展的重要贡献因素。

方法

我们对 4 个大型社区队列研究(ARIC[社区动脉粥样硬化风险研究]、DHS[达拉斯心脏研究]、JHS[杰克逊心脏研究]和 MESA[动脉粥样硬化的多民族研究])进行了回顾性分析,这些研究均有经证实的 HF 事件。研究纳入年龄>40 岁且基线时无 HF 的患者。在 JHS 队列中(针对黑人种族特异性模型)和 ARIC 的白人成年人中(针对白人种族特异性模型),为 HF 风险预测开发了特定于种族的 ML 模型。模型包括来自人口统计学、人体测量学、病史、实验室和心电图领域的 39 个候选变量。在 MESA/DHS 队列的特定种族亚组和 ARIC 的黑人参与者中,对 ML 模型进行了外部验证,并与先前建立的传统和非特定于种族的 ML 模型进行了比较。使用 Harrell C 指数和 Greenwood-Nam-D'Agostino χ检验分别评估判别和校准。

结果

在 JHS(n=4141)和 ARIC(n=7858)的推导队列中,ML 模型对黑人(黑人参与者的 C 指数为 0.88)和白人(白人参与者的 C 指数为 0.89)参与者的区分度均很高。在外部验证队列中,特定于种族的 ML 模型表现出适当的校准和更高的判别能力(黑人个体的 C 指数为 0.80-0.83;白人个体的 C 指数为 0.82),与既定的 HF 风险模型或包含种族作为协变量的非特定于种族的 ML 模型相比。在风险因素中,在两种族中,利钠肽水平均为 HF 风险的最重要预测因子,其次是黑人的肌钙蛋白水平和白人的基于心电图的 Cornell 电压。黑人个体 HF 风险的其他关键预测因素是血糖参数和社会经济因素。相比之下,在白人成年人中,现患心血管疾病和传统心血管危险因素是 HF 风险的更强预测因子。

结论

与传统的 HF 风险和非特定于种族的 ML 模型相比,基于种族和基于 ML 的 HF 风险模型,整合了临床、实验室和生物标志物数据,表现出更高的性能。这种方法确定了 HF 的独特种族特异性贡献因素。

相似文献

8
Development and Validation of a Long-Term Incident Heart Failure Risk Model.开发和验证长期心力衰竭事件风险模型。
Circ Res. 2022 Jan 21;130(2):200-209. doi: 10.1161/CIRCRESAHA.121.319595. Epub 2021 Dec 10.

引用本文的文献

2
A hybrid algorithm-based ECG risk prediction model for cardiovascular disease.一种基于混合算法的心血管疾病心电图风险预测模型。
Eur Heart J Digit Health. 2025 Mar 19;6(3):466-475. doi: 10.1093/ehjdh/ztaf023. eCollection 2025 May.
9
Use of Polygenic Risk Score for Prediction of Heart Failure in Cancer Survivors.利用多基因风险评分预测癌症幸存者的心力衰竭
JACC CardioOncol. 2024 Aug 30;6(5):714-727. doi: 10.1016/j.jaccao.2024.04.010. eCollection 2024 Oct.
10
Machine learning in the prevention of heart failure.机器学习在心力衰竭预防中的应用
Heart Fail Rev. 2025 Jan;30(1):117-129. doi: 10.1007/s10741-024-10448-0. Epub 2024 Oct 7.

本文引用的文献

1
OBLIQUE RANDOM SURVIVAL FORESTS.倾斜随机生存森林
Ann Appl Stat. 2019 Sep;13(3):1847-1883. doi: 10.1214/19-aoas1261. Epub 2019 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验