Department of Chemistry, The George Washington University, Science and Engineering Hall 4000, 800, 22nd St., Northwest, Washington, DC 20052, United States.
J Proteome Res. 2022 Sep 2;21(9):2104-2113. doi: 10.1021/acs.jproteome.2c00145. Epub 2022 Jul 6.
Mass spectrometry-based proteomics is constantly challenged by the presence of contaminant background signals. In particular, protein contaminants from reagents and sample handling are almost impossible to avoid. For data-dependent acquisition (DDA) proteomics, an exclusion list can be used to reduce the influence of protein contaminants. However, protein contamination has not been evaluated and is rarely addressed in data-independent acquisition (DIA). How protein contaminants influence proteomic data is also unclear. In this study, we established new protein contaminant FASTA and spectral libraries that are applicable to all proteomic workflows and evaluated the impact of protein contaminants on both DDA and DIA proteomics. We demonstrated that including our contaminant libraries can reduce false discoveries and increase protein identifications, without influencing the quantification accuracy in various proteomic software platforms. With the pressing need to standardize proteomic workflow in the research community, we highly recommend including our contaminant FASTA and spectral libraries in all bottom-up proteomic data analysis. Our contaminant libraries and a step-by-step tutorial to incorporate these libraries in various DDA and DIA data analysis platforms can be valuable resources for proteomic researchers, freely accessible at https://github.com/HaoGroup-ProtContLib.
基于质谱的蛋白质组学一直受到污染物背景信号的挑战。特别是,来自试剂和样品处理的蛋白质污染物几乎是不可避免的。对于基于数据依赖的采集(DDA)蛋白质组学,可以使用排除列表来减少蛋白质污染物的影响。然而,在数据非依赖采集(DIA)中,蛋白质污染尚未得到评估,也很少得到解决。蛋白质污染物如何影响蛋白质组学数据也不清楚。在这项研究中,我们建立了新的蛋白质污染物 FASTA 和光谱库,适用于所有蛋白质组学工作流程,并评估了蛋白质污染物对 DDA 和 DIA 蛋白质组学的影响。我们证明,包含我们的污染物库可以减少假阳性发现并增加蛋白质鉴定,而不会影响各种蛋白质组学软件平台的定量准确性。由于研究界迫切需要标准化蛋白质组学工作流程,我们强烈建议在所有从头蛋白质组数据分析中包含我们的污染物 FASTA 和光谱库。我们的污染物库以及在各种 DDA 和 DIA 数据分析平台中整合这些库的分步教程,对于蛋白质组学研究人员来说是有价值的资源,可以在 https://github.com/HaoGroup-ProtContLib 上免费访问。