Suppr超能文献

无人工像素级注释的明场细胞显微镜图像中的 ArtSeg-Artifact 分割和去除。

ArtSeg-Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations.

机构信息

Department of Computer Science, University of Tartu, Narva mnt 18, 51009, Tartu, Estonia.

Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.

出版信息

Sci Rep. 2022 Jul 6;12(1):11404. doi: 10.1038/s41598-022-14703-y.

Abstract

Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone to contain visual artifacts that hinder downstream analysis, and automatically removing them is therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for image segmentation, but require pixel-level annotations, which are time-consuming to produce. Here, we propose ScoreCAM-U-Net, a pipeline to segment artifactual regions in brightfield images with limited user input. The model is trained using only image-level labels, so the process is faster by orders of magnitude compared to pixel-level annotation, but without substantially sacrificing the segmentation performance. We confirm that artifacts indeed exist with different shapes and sizes in three different brightfield microscopy image datasets, and distort downstream analyses such as nuclei segmentation, morphometry and fluorescence intensity quantification. We then demonstrate that our automated artifact removal ameliorates this problem. Such rapid cleaning of acquired images using the power of deep learning models is likely to become a standard step for all large scale microscopy experiments.

摘要

明场细胞显微镜是生命科学的基础工具。获取的图像容易包含妨碍下游分析的视觉伪影,因此自动去除它们具有很大的实际意义。深度卷积神经网络是图像分割的最新技术,但需要像素级注释,这需要花费大量时间来制作。在这里,我们提出了 ScoreCAM-U-Net,这是一种使用有限用户输入分割明场图像中人工制品区域的流水线。该模型仅使用图像级标签进行训练,因此与像素级注释相比,该过程快了几个数量级,但不会大大牺牲分割性能。我们在三个不同的明场显微镜图像数据集确认了确实存在具有不同形状和大小的人工制品,并且会扭曲核分割、形态测量和荧光强度定量等下游分析。然后,我们证明我们的自动去除伪影的方法可以改善这个问题。使用深度学习模型的强大功能快速清理获取的图像,这可能成为所有大规模显微镜实验的标准步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd95/9259686/60b7518b394a/41598_2022_14703_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验