IEEE Trans Biomed Eng. 2019 Nov;66(11):3088-3097. doi: 10.1109/TBME.2019.2900378. Epub 2019 Feb 22.
Nucleus recognition is a critical yet challenging step in histopathology image analysis, for example, in Ki67 immunohistochemistry stained images. Although many automated methods have been proposed, most use a multi-stage processing pipeline to categorize nuclei, leading to cumbersome, low-throughput, and error-prone assessments. To address this issue, we propose a novel deep fully convolutional network for single-stage nucleus recognition.
Instead of conducting direct pixel-wise classification, we formulate nucleus identification as a deep structured regression model. For each input image, it produces multiple proximity maps, each of which corresponds to one nucleus category and exhibits strong responses in central regions of the nuclei. In addition, by taking into consideration the nucleus distribution in histopathology images, we further introduce an auxiliary task, region of interest (ROI) extraction, to assist and boost the nucleus quantification with weak ROI annotation. The proposed network can be learned in an end-to-end, pixel-to-pixel manner for simultaneous nucleus detection and classification.
We have evaluated this network on a pancreatic neuroendocrine tumor Ki67 image dataset, and the experiments demonstrate that our method outperforms recent state-of-the-art approaches.
We present a new, pixel-to-pixel deep neural network with two sibling branches for effective nucleus recognition and observe that learning with another relevant task, ROI extraction, can further boost individual nucleus localization and classification.
Our method provides a clean, single-stage nucleus recognition pipeline for histopathology image analysis, especially a new perspective for Ki67 image quantification, which would potentially benefit individual object quantification in whole-slide images.
核识别是组织病理学图像分析中的一个关键但具有挑战性的步骤,例如在 Ki67 免疫组织化学染色图像中。尽管已经提出了许多自动化方法,但大多数方法都使用多阶段处理管道对核进行分类,从而导致繁琐、低通量和易错的评估。为了解决这个问题,我们提出了一种用于单阶段核识别的新型深度全卷积网络。
我们不是直接进行像素级分类,而是将核识别表述为深度结构化回归模型。对于每个输入图像,它会生成多个接近度图,每个接近度图对应一个核类别,并在核的中心区域表现出强烈的响应。此外,考虑到组织病理学图像中的核分布,我们进一步引入了一个辅助任务,即感兴趣区域(ROI)提取,以协助和增强具有弱 ROI 注释的核定量。所提出的网络可以以端到端、像素到像素的方式进行学习,用于同时进行核检测和分类。
我们在胰腺神经内分泌肿瘤 Ki67 图像数据集上评估了该网络,实验表明我们的方法优于最近的最先进方法。
我们提出了一种新的、像素到像素的深度神经网络,具有两个兄弟分支,用于有效的核识别,并且观察到与另一个相关任务(ROI 提取)一起学习可以进一步提高单个核定位和分类的效果。
我们的方法为组织病理学图像分析提供了一个简洁的单阶段核识别管道,特别是为 Ki67 图像定量提供了新的视角,这可能有益于整个幻灯片图像中单个对象的定量。