Suppr超能文献

使用预测编码模型模拟儿童绘画行为的发展和个体差异

Simulating Developmental and Individual Differences of Drawing Behavior in Children Using a Predictive Coding Model.

作者信息

Philippsen Anja, Tsuji Sho, Nagai Yukie

机构信息

International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.

Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.

出版信息

Front Neurorobot. 2022 Jun 20;16:856184. doi: 10.3389/fnbot.2022.856184. eCollection 2022.

Abstract

Predictive coding has recently been proposed as a mechanistic approach to explain human perception and behavior based on the integration of perceptual stimuli (bottom-up information) and the predictions about the world based on previous experience (top-down information). However, the gap between the computational accounts of cognition and evidence of behavioral studies remains large. In this study, we used a computational model of drawing based on the mechanisms of predictive coding to systematically investigate the effects of the precision of top-down and bottom-up information when performing a drawing completion task. The results indicated that sufficient precision of both signals was required for the successful completion of the stimuli and that a reduced precision in either sensory or prediction (i.e., prior) information led to different types of atypical drawing behavior. We compared the drawings produced by our model to a dataset of drawings created by children aged between 2 and 8 years old who drew on incomplete drawings. This comparison revealed that a gradual increase in children's precision of top-down and bottom-up information as they develop effectively explains the observed change of drawing style from scribbling toward representational drawing. Furthermore, individual differences that are prevalent in children's drawings, might arise from different developmental pathways regarding the precision of these two signals. Based on these findings we propose a theory of how both general and individual development of drawing could be explained in a unified manner within the framework of predictive coding.

摘要

预测编码最近被提出作为一种机制方法,用于基于感知刺激(自下而上的信息)与基于先前经验对世界的预测(自上而下的信息)的整合来解释人类的感知和行为。然而,认知的计算模型与行为研究证据之间的差距仍然很大。在本研究中,我们使用了一个基于预测编码机制的绘画计算模型,系统地研究在执行绘画完成任务时自上而下和自下而上信息的精度的影响。结果表明,成功完成刺激需要两种信号都具有足够的精度,并且感觉或预测(即先验)信息中任何一种精度的降低都会导致不同类型的非典型绘画行为。我们将模型生成的绘画与2至8岁儿童在不完整绘画上进行创作的绘画数据集进行了比较。这种比较表明,随着儿童的成长,他们自上而下和自下而上信息的精度逐渐提高,这有效地解释了观察到的绘画风格从涂鸦向具象绘画的变化。此外,儿童绘画中普遍存在的个体差异可能源于这两种信号精度的不同发展路径。基于这些发现,我们提出了一种理论,即在预测编码框架内如何以统一的方式解释绘画的一般发展和个体发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf9/9251405/469a09b8c25b/fnbot-16-856184-g0001.jpg

相似文献

1
Simulating Developmental and Individual Differences of Drawing Behavior in Children Using a Predictive Coding Model.
Front Neurorobot. 2022 Jun 20;16:856184. doi: 10.3389/fnbot.2022.856184. eCollection 2022.
2
Quantifying developmental and individual differences in spontaneous drawing completion among children.
Front Psychol. 2022 Nov 11;13:783446. doi: 10.3389/fpsyg.2022.783446. eCollection 2022.
3
Autistic traits are associated with atypical precision-weighted integration of top-down and bottom-up neural signals.
Cognition. 2020 Jun;199:104236. doi: 10.1016/j.cognition.2020.104236. Epub 2020 Feb 19.
4
Deficits in Prediction Ability Trigger Asymmetries in Behavior and Internal Representation.
Front Psychiatry. 2020 Nov 20;11:564415. doi: 10.3389/fpsyt.2020.564415. eCollection 2020.
5
Reconsidering the scribbling stage of drawing: a new perspective on toddlers' representational processes.
Front Psychol. 2015 Aug 21;6:1227. doi: 10.3389/fpsyg.2015.01227. eCollection 2015.
6
Rigidity in children's drawings and its relation with representational change.
J Exp Child Psychol. 2003 Oct;86(2):124-52. doi: 10.1016/s0022-0965(03)00109-7.
7
Developmental Changes in Early Comprehension and Production of Drawings: Evidence From Two Socioeconomic Backgrounds.
J Genet Psychol. 2017 Jul-Aug;178(4):217-228. doi: 10.1080/00221325.2017.1328385. Epub 2017 Jul 6.
9
Children aged two to four are able to scribble and draw using a smartphone app.
Acta Paediatr. 2017 Jun;106(6):991-994. doi: 10.1111/apa.13818. Epub 2017 Apr 9.

引用本文的文献

1
Exploring cognitive individuality and the underlying creativity in statistical learning and phase entrainment.
EXCLI J. 2023 Aug 4;22:828-846. doi: 10.17179/excli2023-6135. eCollection 2023.

本文引用的文献

1
Quantifying developmental and individual differences in spontaneous drawing completion among children.
Front Psychol. 2022 Nov 11;13:783446. doi: 10.3389/fpsyg.2022.783446. eCollection 2022.
2
No increased circular inference in adults with high levels of autistic traits or autism.
PLoS Comput Biol. 2021 Sep 24;17(9):e1009006. doi: 10.1371/journal.pcbi.1009006. eCollection 2021 Sep.
3
Predictive Processing in Cognitive Robotics: A Review.
Neural Comput. 2021 Apr 13;33(5):1402-1432. doi: 10.1162/neco_a_01383.
4
Deficits in Prediction Ability Trigger Asymmetries in Behavior and Internal Representation.
Front Psychiatry. 2020 Nov 20;11:564415. doi: 10.3389/fpsyt.2020.564415. eCollection 2020.
5
A review on neural network models of schizophrenia and autism spectrum disorder.
Neural Netw. 2020 Feb;122:338-363. doi: 10.1016/j.neunet.2019.10.014. Epub 2019 Nov 13.
6
Nine-month-old infants update their predictive models of a changing environment.
Dev Cogn Neurosci. 2019 Aug;38:100680. doi: 10.1016/j.dcn.2019.100680. Epub 2019 Jul 10.
7
Predictive learning: its key role in early cognitive development.
Philos Trans R Soc Lond B Biol Sci. 2019 Apr 29;374(1771):20180030. doi: 10.1098/rstb.2018.0030.
8
A Neurorobotics Simulation of Autistic Behavior Induced by Unusual Sensory Precision.
Comput Psychiatr. 2018 Dec;2:164-182. doi: 10.1162/cpsy_a_00019.
9
Prediction in infants and adults: A pupillometry study.
Dev Sci. 2019 Jul;22(4):e12780. doi: 10.1111/desc.12780. Epub 2018 Dec 27.
10
The Predictive Coding Account of Psychosis.
Biol Psychiatry. 2018 Nov 1;84(9):634-643. doi: 10.1016/j.biopsych.2018.05.015. Epub 2018 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验