Suppr超能文献

人工智能能否支持甚至取代医生来测量矢状平衡?对 170 例全脊柱术前和术后图像的验证研究。

Can artificial intelligence support or even replace physicians in measuring sagittal balance? A validation study on preoperative and postoperative full spine images of 170 patients.

机构信息

Raylytic GmbH, Petersstrasse 32-34, 04109, Leipzig, Germany.

Department of Orthopedics, Klinikum Magdeburg, Magdeburg, Germany.

出版信息

Eur Spine J. 2022 Aug;31(8):1943-1951. doi: 10.1007/s00586-022-07309-5. Epub 2022 Jul 7.

Abstract

PURPOSE

Sagittal balance (SB) plays an important role in the surgical treatment of spinal disorders. The aim of this research study is to provide a detailed evaluation of a new, fully automated algorithm based on artificial intelligence (AI) for the determination of SB parameters on a large number of patients with and without instrumentation.

METHODS

Pre- and postoperative sagittal full body radiographs of 170 patients were measured by two human raters, twice by one rater and by the AI algorithm which determined: pelvic incidence, pelvic tilt, sacral slope, L1-S1 lordosis, T4-T12 thoracic kyphosis (TK) and the spino-sacral angle (SSA). To evaluate the agreement between human raters and AI, the mean error (95% confidence interval (CI)), standard deviation and an intra- and inter-rater reliability was conducted using intra-class correlation (ICC) coefficients.

RESULTS

ICC values for the assessment of the intra- (range: 0.88-0.97) and inter-rater (0.86-0.97) reliability of human raters are excellent. The algorithm is able to determine all parameters in 95% of all pre- and in 91% of all postoperative images with excellent ICC values (PreOP-range: 0.83-0.91, PostOP: 0.72-0.89). Mean errors are smallest for the SSA (PreOP: -0.1° (95%-CI: -0.9°-0.6°); PostOP: -0.5° (-1.4°-0.4°)) and largest for TK (7.0° (6.1°-7.8°); 7.1° (6.1°-8.1°)).

CONCLUSION

A new, fully automated algorithm that determines SB parameters has excellent reliability and agreement with human raters, particularly on preoperative full spine images. The presented solution will relieve physicians from time-consuming routine work of measuring SB parameters and allow the analysis of large databases efficiently.

摘要

目的

矢状平衡(SB)在脊柱疾病的手术治疗中起着重要作用。本研究旨在详细评估一种新的、基于人工智能(AI)的全自动算法,用于确定大量有和无器械的患者的 SB 参数。

方法

170 例患者的术前和术后全脊柱矢状面全长 X 线片由两名人类评估者、一名评估者两次和 AI 算法测量,确定参数包括骨盆入射角、骨盆倾斜角、骶骨倾斜角、L1-S1 前凸角、T4-T12 胸椎后凸角(TK)和脊柱-骶骨角(SSA)。为了评估人类评估者和 AI 之间的一致性,使用组内相关系数(ICC)进行平均误差(95%置信区间(CI))、标准差和内部和外部评估者可靠性的评估。

结果

人类评估者的内部(范围:0.88-0.97)和外部(0.86-0.97)可靠性评估的 ICC 值均为优秀。该算法能够在 95%的术前和 91%的术后图像中确定所有参数,ICC 值均为优秀(术前范围:0.83-0.91,术后:0.72-0.89)。SSA 的平均误差最小(术前:-0.1°(95%CI:-0.9°-0.6°);术后:-0.5°(-1.4°-0.4°)),TK 的平均误差最大(7.0°(6.1°-7.8°);7.1°(6.1°-8.1°))。

结论

一种新的、全自动的算法可以确定 SB 参数,具有出色的可靠性和与人类评估者的一致性,特别是在术前全脊柱图像上。该解决方案将使医生从耗时的 SB 参数测量工作中解脱出来,并允许有效地分析大型数据库。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验