Nakarai Hiroyuki, Cina Andrea, Jutzeler Catherine, Grob Alexandra, Haschtmann Daniel, Loibl Markus, Fekete Tamas F, Kleinstück Frank, Wilke Hans-Joachim, Tao Youping, Galbusera Fabio
Department of Spine Surgery and Neurosurgery, Schulthess Klinik, Zürich, Switzerland.
Department of Spine Surgery, Hospital for Special Surgery, New York, US.
Global Spine J. 2025 Mar;15(2):710-721. doi: 10.1177/21925682231205352. Epub 2023 Oct 9.
Retrospective data analysis.
This study aims to develop a deep learning model for the automatic calculation of some important spine parameters from lateral cervical radiographs.
We collected two datasets from two different institutions. The first dataset of 1498 images was used to train and optimize the model to find the best hyperparameters while the second dataset of 79 images was used as an external validation set to evaluate the robustness and generalizability of our model. The performance of the model was assessed by calculating the median absolute errors between the model prediction and the ground truth for the following parameters: T1 slope, C7 slope, C2-C7 angle, C2-C6 angle, Sagittal Vertical Axis (SVA), C0-C2, Redlund-Johnell distance (RJD), the cranial tilting (CT) and the craniocervical angle (CCA).
Regarding the angles, we found median errors of 1.66° (SD 2.46°), 1.56° (1.95°), 2.46° (SD 2.55), 1.85° (SD 3.93°), 1.25° (SD 1.83°), .29° (SD .31°) and .67° (SD .77°) for T1 slope, C7 slope, C2-C7, C2-C6, C0-C2, CT, and CCA respectively. As concerns the distances, we found median errors of .55 mm (SD .47 mm) and .47 mm (.62 mm) for SVA and RJD respectively.
In this work, we developed a model that was able to accurately predict cervical spine parameters from lateral cervical radiographs. In particular, the performances on the external validation set demonstrate the robustness and the high degree of generalizability of our model on images acquired in a different institution.
回顾性数据分析。
本研究旨在开发一种深度学习模型,用于从颈椎侧位X线片自动计算一些重要的脊柱参数。
我们从两个不同机构收集了两个数据集。第一个包含1498张图像的数据集用于训练和优化模型,以找到最佳超参数,而第二个包含79张图像的数据集用作外部验证集,以评估我们模型的稳健性和通用性。通过计算模型预测值与以下参数的真实值之间的中位数绝对误差来评估模型性能:T1斜率、C7斜率、C2-C7角度、C2-C6角度、矢状垂直轴(SVA)、C0-C2、Redlund-Johnell距离(RJD)、颅骨倾斜度(CT)和颅颈角(CCA)。
关于角度,我们发现T1斜率、C7斜率、C2-C7、C2-C6、C0-C2、CT和CCA的中位数误差分别为1.66°(标准差2.46°)、1.56°(1.95°)、2.46°(标准差2.55)、1.85°(标准差3.93°)、1.25°(标准差1.83°)、0.29°(标准差0.31°)和0.67°(标准差0.77°)。关于距离,我们发现SVA和RJD的中位数误差分别为0.55毫米(标准差0.47毫米)和0.47毫米(0.62毫米)。
在这项工作中,我们开发了一种能够从颈椎侧位X线片准确预测颈椎参数的模型。特别是,在外部验证集上的表现证明了我们的模型在不同机构获取的图像上具有稳健性和高度通用性。