Suppr超能文献

深度学习算法在成人脊柱畸形矢状平衡的全自动测量中的应用。

Deep learning algorithm for fully automated measurement of sagittal balance in adult spinal deformity.

机构信息

Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.

Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.

出版信息

Eur Spine J. 2024 Nov;33(11):4119-4124. doi: 10.1007/s00586-023-08109-1. Epub 2024 Jan 17.

Abstract

AIM

Deep learning (DL) algorithms can be used for automated analysis of medical imaging. The aim of this study was to assess the accuracy of an innovative, fully automated DL algorithm for analysis of sagittal balance in adult spinal deformity (ASD).

MATERIAL AND METHODS

Sagittal balance (sacral slope, pelvic tilt, pelvic incidence, lumbar lordosis and sagittal vertical axis) was evaluated in 141 preoperative and postoperative radiographs of patients with ASD. The DL, landmark-based measurements, were compared with the ground truth values from validated manual measurements.

RESULTS

The DL algorithm showed an excellent consistency with the ground truth measurements. The intra-class correlation coefficient between the DL and ground truth measurements was 0.71-0.99 for preoperative and 0.72-0.96 for postoperative measurements. The DL detection rate was 91.5% and 84% for preoperative and postoperative images, respectively.

CONCLUSION

This is the first study evaluating a complete automated DL algorithm for analysis of sagittal balance with high accuracy for all evaluated parameters. The excellent accuracy in the challenging pathology of ASD with long construct instrumentation demonstrates the eligibility and possibility for implementation in clinical routine.

摘要

目的

深度学习(DL)算法可用于医学影像学的自动分析。本研究旨在评估一种创新的、完全自动化的 DL 算法在分析成人脊柱畸形(ASD)矢状平衡中的准确性。

材料与方法

对 141 例 ASD 患者术前和术后的 X 线片进行矢状平衡(骶骨倾斜度、骨盆倾斜度、骨盆入射角、腰椎前凸和矢状垂直轴)评估。DL 和基于标志点的测量结果与经过验证的手动测量的真实值进行比较。

结果

DL 算法与真实值测量结果具有极好的一致性。DL 与真实值测量的组内相关系数术前为 0.71-0.99,术后为 0.72-0.96。DL 的检测率分别为术前和术后图像的 91.5%和 84%。

结论

这是第一项评估完整的自动化 DL 算法分析矢状平衡的研究,该算法对所有评估参数都具有很高的准确性。在长节段器械固定的 ASD 挑战性病变中,其具有出色的准确性,这证明了其在临床常规应用的资格和可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验