Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States.
J Chem Inf Model. 2022 Jul 25;62(14):3463-3475. doi: 10.1021/acs.jcim.2c00630. Epub 2022 Jul 7.
Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αβ/α'β') encoded by the and genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.
丙酮酸脱氢酶复合物(PDC)缺陷是导致原发性高乳酸血症的主要原因,这种疾病发病率和死亡率都很高,且治疗选择有限。线粒体多酶丙酮酸脱氢酶复合物(PDC-E1)的 E1 成分是由 和 基因编码的异二聚体(αβ/α'β')的对称二聚体,每个对称活性位点由高度保守的磷酸化环 A 和 B 组成。 突变负责 82-88%的病例。超过 85%的具有致病错义突变(DMM)的 E1α 残基是不可溶剂的,其中约 30%的残基参与亚基-亚基界面接触(SSIC)。我们对野生型(WT)PDC-E1 和具有 E1α DMM 的 E1 变体进行了分子动力学模拟,这些变体的 E1α DMM 位于 R349 和 W185(参与 SSIC 的残基),以研究它们对人 PDC-E1 结构的影响。我们评估了 E1 结构和动力学的变化,并研究了它们对具有特定 DMM 的 E1 功能的影响。我们发现,对于 E1 生物活性至关重要的磷酸化环 A 的动力学随着至少约 15 Å 距离的 DMM 而改变。因为通讯对于 PDC-E1 活性是必不可少的(具有交替的活性位点),所以我们还通过中心性分析研究了 WT PDC-E1 内可能的通讯网络。我们观察到 DMM 改变/破坏了 PDC-E1 的通讯网络。总的来说,这些结果表明 PDC-E1 存在变构效应,这对于开发针对特定 E1α DMM 的新型小分子治疗药物具有重要意义,例如由于 E1α DMM 导致的 PDC 缺乏症中约 10%的 R349 替代物。